首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent discovery of methane on Mars has led to much discussion concerning its origin. On Earth, the isotopic signatures of methane vary with the nature of its production. Specifically, the ratios among 12CH4, 13CH4, and 12CH3D differ for biotic and abiotic origins. On Mars, measuring these ratios would provide insights into the origins of methane and measurements of water isotopologues co-released with methane would assist in testing their chemical relationship. Since 1997, we have been measuring HDO and H2O in Mars’ atmosphere and comparing their ratio to that in Earth’s oceans. We recently incorporated a line-by-line radiative transfer model (LBLRTM) into our analysis. Here, we present a map for [HDO]/[H2O] along the central meridian (154°W) for Ls=50°. From these results, we constructed models to determine the observational conditions needed to quantify the isotopic ratios of methane in Mars’ atmosphere. Current ground-based instruments lack the spectral resolution and sensitivity needed to make these measurements. Measurements of the isotopologues of methane will likely require in situ sampling.  相似文献   

2.
Recent observations have evidenced traces of methane (CH4) heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to the other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxide, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.  相似文献   

3.
《Planetary and Space Science》2007,55(13):2010-2014
Since the discovery of the main composition of Titan's atmosphere, many laboratory experiments have been carried out to reproduce its chemical evolution, particularly the formation of organic haze particles found throughout this atmosphere. Some of these simulations have produced solid products—referred to as Titan's tholins—that are assumed to have properties similar to those of Titan's aerosols. In the present work, we focus on the possible isotopic fractionation of carbon during the processes involved in the formation of Titan's tholins. Initial 12C/13C isotopic ratios measured on tholins made in the laboratory using cold plasma discharges are presented. Measurements of isotopic enhancement in 13C (δ13C), both on tholins and on the initial gas mixture (N2:CH4 (98:2)) used to produce them do not show any clear deficit or enrichment in 13C relative to 12C in the lab-made tholins compared to the initial gas mixture. Preliminary data recovered from the Aerosol Collector Pyrolyzer (ACP) experiment of the Huygens probe suggests that Titan's aerosols may also be exempt of carbon isotopic enrichment. This observation creates possibilities for deeper analysis of ACP experiment data.  相似文献   

4.
There have been several reports of methane on Mars at the 10-60 ppbv level. Most suggest that methane is both seasonally and latitudinally variable. Here we review why variable methane on Mars is physically and chemically implausible, and then we critically review the published reports. There is no known mechanism for destroying methane chemically on Mars. But if there is one, methane oxidation would deplete the O2 in Mars’s atmosphere in less than 10,000 years unless balanced by an equally large unknown source of oxidizing power. Physical sequestration does not raise these questions, but adsorption in the regolith or condensation in clathrates ignore competition for adsorption sites or are inconsistent with clathrate stability, respectively. Furthermore, any mechanism that relies on methane’s van der Waals’ attraction is inconsistent with the continued presence of Xe in the atmosphere at the 60 ppbv level. We then use the HITRAN database and transmission calculations to identify and characterize the absorption lines that would be present on Earth or Mars at the wavelengths of the published observations. These reveal strong competing telluric absorption that is most problematic at just those wavelengths where methane’s signature seems most clearly seen from Earth. The competing telluric lines must be removed with models. The best case for martian methane was made for the 12CH4ν3 R0 and R1 lines seen in blueshift when Mars was approaching Earth in early 2003 (Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M., Smith, M.D. [2009]. Science 323, 1041-1045). For these the Doppler shift moves the two martian lines into near coincidence with telluric 13CH4ν3 R1 and R2 lines that are 10-50× stronger than the inferred martian lines. By contrast, the 12CH4ν3 R0 and R1 lines when observed in redshift do not contend with telluric 13CH4. For these lines, Mumma et al.’s observations and analyses are consistent with an upper limit on the order of 3 ppbv.  相似文献   

5.
The detection of CH4 in the martian atmosphere, at a mixing ratio of about 10 ppb, prompted Krasnopolsky et al. [Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Icarus 172, 537-547] and Krasnopolsky [Krasnopolsky, V.A., 2006. Icarus 180, 359-367] to propose that the CH4 is of biogenic origin. Bar-Nun and Dimitrov [Bar-Nun, A., Dimitrov, V., 2006. Icarus 181, 320-322] proposed that CH4 can be formed in the martian atmosphere by photolysis of H2O in the presence of CO. We based our arguments on a clear demonstration that CH4 is formed in our experiments, and on thermodynamic equilibrium calculations, which show that CH4 formation is favored even in the presence of oxygen at a mixing ratio 1.3×10−3, as observed on Mars. In the present comment, Krasnopolsky [Krasnopolsky, V.A., 2007. Icarus, in press (this issue)] presents his arguments against the suggestion of Bar-Nun and Dimitrov [Bar-Nun, A., Dimitrov, V., 2006. Icarus 181, 320-322], based on the effect of O2 on CH4 formation, the absence of kinetic pathways for CH4 formation and on the inadequacy of thermodynamic equilibrium calculations to describe the martian atmosphere. In this rebuttal we demonstrate that experiments with molecular oxygen at a ratio of O2/CO2=(8.9-17)×10−3, exceeding the martian ratio, still form CH4. Thermodynamic equilibrium calculations replicate the experimental CH4 mixing ratio to within a factor of 1.9 and demonstrate that CH4 production is favored in the martian atmosphere, which is obviously not in thermodynamic equilibrium. Consequently, we do not find the presence of methane to be a sign of biological activity on Mars.  相似文献   

6.
Fifteen organic and three inorganic compounds were tested for methane (CH4) evolution under simulated martian conditions of 6.9 mbar; UVC (200-280 nm) flux of 4 W m−2; 20 °C; simulated optical depth of 0.1; and a Mars gas composition of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.13%), and water vapor (0.03%). All three inorganic compounds (i.e., NaCl, CaCO3, graphite) failed to evolve methane at the minimum detection level 0.5 ppm, or above. In contrast, all organic compounds evolved methane when exposed to UV irradiation under simulated martian conditions. The polycyclic aromatic hydrocarbon, pyrene, released the most methane per unit of time at 0.175 nmol CH4 g−1 h−1, and a spectral reflectance target material used for the MER rovers and Phoenix lander released the least methane at 0.00065 nmol CH4 cm−2 h−1. Methane was also released from UV-killed bacterial endospores of Bacillus subtilis. Although all organic compounds evolved methane when irradiated with UV photons under martian conditions, the concentrations of residual organics, biogenic signature molecules, and dead microbial cells should be relatively low on the exterior surfaces of the MSL rover, and, thus, not significant sources of methane contamination. In contrast, kapton tape was found to evolve methane at the rate of 0.00165 nmol CH4 cm−2 h−1 (16.5 nmol m−2 h−1) under the UV and martian conditions tested. Although the evolution of methane from kapton tape was found to decline over time, the large amount of kapton tape used on the MSL rover (lower bound estimated at 3 m2) is likely to create a significant source of terrestrial methane contamination during the early part of the mission.  相似文献   

7.
We propose a new interpretation of the D/H ratio in CH4 observed in the atmosphere of Titan. Using a turbulent evolutionary model of the subnebula of Saturn (O. Mousis et al. 2002, Icarus156, 162-175), we show that in contrast to the current scenario, the deuterium enrichment with respect to the solar value observed in Titan cannot have occurred in the subnebula. Instead, we argue that values of the D/H ratio measured in Titan were obtained in the cooling solar nebula by isotopic thermal exchange of hydrogen with CH3D originating from interstellar methane D-enriched ices that vaporized in the nebula. The rate of the isotopic exchange decreased with temperature and became fully inhibited around 200 K. Methane was subsequently trapped in crystalline ices around 10 AU in the form of clathrate hydrates formed at 60 K, and incorporated into planetesimals that formed the core of Titan. The nitrogen-methane atmosphere was subsequently outgassed from the decomposition of the hydrates (Mousis et al. 2002). By use of a turbulent evolutionary model of the solar nebula (O. Mousis et al. 2000, Icarus148, 513-525), we have reconstructed the entire story of D/H in CH4, from its high value in the early solar nebula (acquired in the presolar cloud) down to the value measured in Titan's atmosphere today. Considering the two last determinations of the D/H ratio in Titan—D/H=(7.75±2.25)×10−5 obtained from ground-based observations (Orton 1992, In: Symposium on Titan, ESA SP-338, pp. 81-85), and D/H=(8.75+3.25−2.25)×10−5, obtained from ISO observations (Coustenis et al. 2002, submitted for publication)—we inferred an upper limit of the D/H ratio in methane in the early outer solar nebula of about 3×10−4. Our approach is consistent with the scenario advocated by several authors in which the atmospheric methane of Titan is continuously replenished from a reservoir of clathrate hydrates of CH4 at high pressures, located in the interior of Titan. If this scenario is correct, observations of the satellite to be performed by the radar, the imaging system, and other remote sensing instruments aboard the spacecraft of the Cassini-Huygens mission from 2004 to 2008 should reveal local disruptions of the surface and other signatures of the predicted outgassing.  相似文献   

8.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

9.
Long-term spectroscopic observations of the O2 dayglow at 1.27 μm result in a map of the latitudinal and seasonal behavior of the dayglow intensity for the full martian year. The O2 dayglow is a sensitive tracer of Mars' photochemistry, and this map reflects variations of Mars' photochemistry at low and middle latitudes. It may be used to test photochemical models. Long-term observations of the CO mixing ratio have been also combined into the seasonal-latitudinal map. Seasonal and latitudinal variations of the mixing ratios of CO and the other incondensable gases (N2, Ar, O2, and H2) discovered in our previous work are caused by condensation and sublimation of CO2 to and from the polar regions. They reflect dynamics of the atmosphere and polar processes. The observed map may be used to test global circulation models of the martian atmosphere. The observed global abundances of CO are in reasonable agreement with the predicted variations with the 11-year solar cycle. Despite the perfect observing conditions, methane has not been detected using the IRTF/CSHELL with a 3σ upper limit of 14 ppb. This upper limit does not rule out the value of 10 ppb observed using the Canada-France-Hawaii Telescope and the Mars Express Planetary Fourier Spectrometer.  相似文献   

10.
Using the Fourier Transform Spectrometer at the Canada-France-Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to , the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases.  相似文献   

11.
Spectroscopic remote sensing in the infrared and (sub)millimeter range is a powerful technique that is well suited for detecting minor species in planetary atmospheres (Planet Space Sci. 43(1995) 1485). Yet, only a handful of molecules in the Mars atmosphere (CO2, CO and H2O along with their isotopic species, O3, and more recently H2O2 and CH4) have been detected so far by this method. New high performance spectroscopic instruments will become available in the future in the infrared and (sub)millimeter range, for observations from the ground (infrared spectrometers on 8 m class telescopes, large millimeter and submillimeter interferometers) and from space, in particular the Planetary Fourier Spectrometer (PFS) aboard Mars Express (MEx), and the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory (HSO). In this paper we will present results of a study that determines detectability of minor species in the atmosphere of Mars, taking into account the expected performance of the above spectroscopic instruments. In the near future, a new determination of the D/H value is expected with the PFS, especially during times of maximum H2O abundance in the martian atmosphere. PFS is also expected to place constraints on the abundance of several minor species (H2O2,CH4,CH2O, SO2, H2S, OCS, HCl) above any local outgassing sources, the hot spots. It will be possible to obtain complementary information on some minor species (O3,H2O2, CH4) from ground-based infrared spectrometers on large telescopes. In the more distant future, HIFI will be ideally suited for measuring the isotopic ratios with unprecedented accuracy. Moreover, it should be able to observe O2, which has not yet been detected spectroscopically in the IR/submm range, as well as H2O2. HIFI should also provide upper limits for several species that have not yet been detected (HCl, NH3, PH3) in the atmosphere of Mars. Some species (SO, SO2,H2S, OCS, CH2O) that may be observable from the ground could be searched for with present single-dish antennae and arrays, and in the future with the Atacama Large Millimeter Array (ALMA) submillimeter interferometer.  相似文献   

12.
Ozone is an important observable tracer of martian photochemistry, including odd hydrogen (HOx) species important to the chemistry and stability of the martian atmosphere. Infrared heterodyne spectroscopy with spectral resolution ?106 provides the only ground-based direct access to ozone absorption features in the martian atmosphere. Ozone abundances were measured with the Goddard Infrared Heterodyne Spectrometer and the Heterodyne Instrument for Planetary Wind and Composition at the NASA Infrared Telescope Facility on Mauna Kea, Hawai'i. Retrieved total ozone column abundances from various latitudes and orbital positions (LS=40°, 74°, 102°, 115°, 202°, 208°, 291°) are compared to those predicted by the first three-dimensional gas phase photochemical model of the martian atmosphere [Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. J. Geophys. Res. 109, doi:10.1029/2004JE002268. E07004]. Observed and modeled ozone abundances show good agreement at all latitudes at perihelion orbital positions (LS=202°, 208°, 291°). Observed low-latitude ozone abundances are significantly higher than those predicted by the model at aphelion orbital positions (LS=40°, 74°, 115°). Heterogeneous loss of odd hydrogen onto water ice cloud particles would explain the discrepancy, as clouds are observed at low latitudes around aphelion on Mars.  相似文献   

13.
Régis Courtin 《Icarus》1982,51(3):466-475
The pressure-induced absorptions of gaseous nitrogen (N2) and methane (CH4) are computed on the basis of the collisional lineshape theory of G. Birnhaum and E.R. Cohen [Canad. J. Phys.54, 593–602 (1976)]. Laboratory data at 300 and 124°K for N2 and at 296 and 195°K for CH4 are used to determine the collisional time constant and their temperature dependence. The spectrum of Titan from the microwave to the far-infrared region (0.1–600 cm?1) is then modeled using these opacities and a temperature profile of Titan's atmosphere derived from the Voyager 1 radio occultation experiment. The model atmosphere is composed of N2 and CH4, their relative proportions being determined by the vapor pressure law of CH4. A model with gaseous opacity alone is ruled out by the far-infrared observations. An additional opacity, thought to be associated with a methane cloud, is confirmed. The effective temperature of Titan is estimated at Te = 83.2 ± 1.4°K.  相似文献   

14.
The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer Solar System bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 μm to study CH3D bands at 2.47, 2.87, and 4.56 μm, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.  相似文献   

15.
High-resolution infrared imaging spectroscopy of Mars has been achieved at the NASA Infrared Telescope Facility (IRTF) on June 19-21, 2003, using the Texas Echelon Cross Echelle Spectrograph (TEXES). The areocentric longitude was 206°. Following the detection and mapping of hydrogen peroxide H2O2 [Encrenaz et al., 2004. Icarus 170, 424-429], we have derived, using the same data set, a map of the water vapor abundance. The results appear in good overall agreement with the TES results and with the predictions of the Global Circulation Model (GCM) developed at the Laboratory of Dynamical Meteorology (LMD), with a maximum abundance of water vapor of 3±1.5×10−4(17±9 pr-μm). We have searched for CH4 over the martian disk, but were unable to detect it. Our upper limits are consistent with earlier reports on the methane abundance on Mars. Finally, we have obtained new measurements of CO2 isotopic ratios in Mars. As compared to the terrestrial values, these values are: (18O/17O)[M/E] = 1.03 ± 0.09; (13C/12C)[M/E] = 1.00 ± 0.11. In conclusion, in contrast with the analysis of Krasnopolsky et al. [1996. Icarus 124, 553-568], we conclude that the derived martian isotopic ratios do not show evidence for a departure from their terrestrial values.  相似文献   

16.
Methane is, together with N2, the main precursor of Titan’s atmospheric chemistry. In our laboratory, we are currently developing a program of laboratory simulations of Titan’s atmosphere, where methane is intended to be dissociated by multiphotonic photolysis at 248 nm. A preliminary study has shown that multiphotonic absorption of methane at 248 nm is efficient and leads to the production of hydrocarbons such as C2H2 (Romanzin et al., 2008). Yet, at this wavelength, little is known about the branching ratios of the hydrocarbon radicals (CH3, CH2 and CH) and their following photochemistry. This paper thus aims at investigating methane photochemistry at 248 nm by comparing the chemical evolution observed after irradiation of CH4 at 248 and at 121.6 nm (Ly-α). It is indeed important to see if the chemistry is driven the same way at both wavelengths in particular because, on Titan, methane photolysis mainly involves Ly-α photons. An approach combining experiments and theoretical analysis by means of a specifically adapted 0-D model has thus been developed and is presented in this paper. The results obtained clearly indicate that the chemistry is different depending on the wavelength. They also suggest that at 248 nm, methane dissociation is in competition with ionisation, which could occur through a three-photon absorption process. As a consequence, 248 nm photolysis appears to be unsuitable to study methane neutral photochemistry alone. The implications of this result on our laboratory simulation program and new experimental developments are discussed. Additional information on methane photochemistry at 121.6 nm are also obtained.  相似文献   

17.
We report the detection of 13CH3D in Titan's stratosphere from Cassini/CIRS infrared spectra near 8.7 μm. Fitting simultaneously the ν6 bands of both 13CH3D and 12CH3D and the ν4 band of CH4, we derive a D/H ratio equal to and a 12C/13C ratio in deuterated methane of , consistent with that measured in normal methane.  相似文献   

18.
Using spectra taken with NIRSPEC (Near Infrared Spectrometer) and adaptive optics on the Keck II telescope, we resolved the latitudinal variation of the 3ν2 band of CH3D at 1.56 μm. As CH3D is less abundant than CH4 by a factor of 50±10×10-5, these CH3D lines do not saturate in Titan’s atmosphere, and are well characterized by laboratory measurements. Thus they do not suffer from the large uncertainties of the CH4 lines that are weak enough to be unsaturated in Titan. Our measurements of the methane abundance are confined to the latitude range of 32°S-18°N and longitudes sampled by a 0.04″ slit centered at ∼195°W. The methane abundance below 10 km is constant to within 20% in the tropical atmosphere sampled by our observations, consistent with the low surface insolation and lack of surface methane [Griffith, C.A., McKay, C.P., Ferri, F., 2008. Astrophys. J. 687, L41-L44].  相似文献   

19.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

20.
Abstract— Considerable evidence points to a martian origin of the SNC meteorites. Noble gas isotopic compositions have been measured in most SNC meteorites. The 129Xe/132Xe vs. 84Kr/132Xe ratios in Chassigny, most shergottites, and lithology C of EETA 79001 define a linear array. This array is thought to be a mixing line between martian mantle and martian atmosphere. One of the SNC meteorites, Nakhla, contains a leachable component that has an elevated 129Xe/132Xe ratio relative to its 84Kr/132Xe ratio when compared to this approximately linear array. The leachable component probably consists in part of iddingsite, an alteration product produced by interaction of olivine with aqueous fluid at temperatures lower than 150 °C. The elevated Xe isotopic ratio may represent a distinct reservoir in the martian crust or mantle. More plausibly, it is elementally fractionated martian atmosphere. Formation of sediments fractionates the noble gases in the correct direction. The range of sediment/atmosphere fractionation factors is consistent with the elevated 129Xe/132Xe component in Nakhla being contained in iddingsite, a low temperature weathering product. The crystallization age of Nakhla is 1.3 Ga. Its low-shock state suggests that it was ejected from near the surface of Mars. As liquid water is required for the formation of iddingsite, these observations provide further evidence for the near surface existence of aqueous fluids on Mars more recently than 1.3 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号