首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.J. Peale 《Icarus》2006,181(2):338-347
In determining Mercury's core structure from its rotational properties, the value of the normalized moment of inertia, C/MR2, from the location of Cassini 1 is crucial. If Mercury's spin axis occupies Cassini state 1, its position defines the location of the state, where the axis is fixed in the frame precessing with the orbit. Although tidal and core-mantle dissipation drive the spin to the Cassini state with a time scale O(105) years, the spin might still be displaced from the Cassini state if the variations in the orbital elements induced by planetary perturbations, which change the position of the Cassini state, cause the spin to lag behind as it attempts to follow the state. After being brought to the state by dissipative processes, the spin axis is expected to follow the Cassini state for orbit variations with time scales long compared to the 1000 year precession period of the spin about the Cassini state because the solid angle swept out by the spin axis as it precesses is an adiabatic invariant. Short period variations in the orbital elements of small amplitude should cause displacements that are commensurate with the amplitudes of the short period terms. The exception would be if there are forcing terms in the perturbations that are nearly resonant with the 1000 year precession period. The precision of the radar and eventual spacecraft measurements of the position of Mercury's spin axis warrants a check on the likely proximity of the spin axis to the Cassini state. How confident should we be that the spin axis position defines the Cassini state sufficiently well for a precise determination of C/MR2? By following simultaneously the spin position and the Cassini state position during long time scale orbital variations over past 3 million years [Quinn, T.R., Tremaine, S., Duncan, M., 1991. Astron. J. 101, 2287-2305] and short time scale variations for 20,000 years [JPL Ephemeris DE 408; Standish, E.M., private communication, 2005], we show that the spin axis will remain within one arcsec of the Cassini state after it is brought there by dissipative torques. In this process the spin is located in the orbit frame of reference, which in turn is referenced to the inertial ecliptic plane of J2000. There are no perturbations with periods resonant with the precession period that could cause large separations. We thus expect Mercury's spin to occupy Cassini state 1 well within the uncertainties for both radar and spacecraft measurements, with correspondingly tight constraints on C/MR2 and the extent of Mercury's molten core. Two unlikely caveats for this conclusion are: (1) an excitation of a free spin precession by an unknown mechanism or (2) a displacement by a dissipative core mantle interaction that exceeds the measurement uncertainties.  相似文献   

2.
Abstract— We review the assertion that the precise measurement of the second degree gravitational harmonic coefficients, the obliquity, and the amplitude of the physical libration in longitude, C20, C22, θ, and φ0, for Mercury are sufficient to determine whether or not Mercury has a molten core (Peale, 1976). The conditions for detecting the signature of the molten core are that such a core not follow the 88‐day physical libration of the mantle induced by periodic solar torques, but that it does follow the 250 000‐year precession of the spin axis that tracks the orbit precession within a Cassini spin state. These conditions are easily satisfied if the coupling between the liquid core and solid mantle is viscous in nature. The alternative coupling mechanisms of pressure forces on irregularities in the core‐mantle boundary (CMB), gravitational torques between an axially asymmetric mantle and an assumed axially asymmetric solid inner core, and magnetic coupling between the conducting molten core and a conducting layer in the mantle at the CMB are shown for a reasonable range of assumptions not to frustrate the first condition while making the second condition more secure. Simulations have shown that the combination of spacecraft tracking and laser altimetry during the planned MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, Ranging) orbiter mission to Mercury will determine C20, C22, and θ to better than 1% and φ0 to better than 8%—sufficient precision to distinguish a molten core and constrain its size. The possible determination of the latter two parameters to 1% or less with Earth‐based radar experiments and MESSENGER determination of C20 and C22 to 0.1% would lead to a maximum uncertainty in the ratio of the moment of inertia of the mantle to that of the whole planet, Cm/C, of ?2% with comparable precision in characterizing the extent of the molten core.  相似文献   

3.
E. Bois  N. Rambaux   《Icarus》2007,192(2):308-317
Mercury's capture into the 3:2 spin–orbit resonance can be explained as a result of its chaotic orbital dynamics. One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Analytical approaches at the first-order level using the Cassini state assumptions give the obliquity constant or quasi-constant. Which is the obliquity's dynamical behavior deriving from a complete spin–orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model (acronym of Spin–Orbit N-bodY Relativistic model) integrating the spin–orbit N-body problem applied to the Solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin–orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin–orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin–orbit motion of Mercury in the 2-body problem case (Sun–Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin–orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center. We note that the dynamically driven spin precession, which occurs when the planetary interactions are included, is more complex than the purely kinematic case. Nevertheless, in such a N-body problem, we find that the 3:2 spin–orbit resonance is really combined to a synchronism where the spin and orbit poles on average precess at the same rate while the orbit inclination and the spin axis orientation on average decrease at the same rate. As a consequence and whether it would turn out that there exists an irreducible minimum of the oscillation amplitude, quasi-periodic oscillations found in Mercury's obliquity should be to geometrically understood as librations related to these synchronisms that both follow a Cassini state. Whatever the open question on the minimal amplitude in the obliquity's oscillations and in spite of the planetary interactions indirectly acting by the solar torque on Mercury's rotation, Mercury remains therefore in a stable equilibrium state that proceeds from a 2-body Cassini state.  相似文献   

4.
Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. The value of the obliquity must be known precisely in order to constrain the size of the planet's core within the framework suggested by Peale [Peale, S.J., 1976. Nature 262, 765-766]. Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] have suggested that Mercury's obliquity varies on thousand-year timescales due to planetary perturbations, potentially ruining the feasibility of Peale's experiment. We use a Hamiltonian approach (free of energy dissipation) to study the spin-orbit evolution of Mercury subject to secular planetary perturbations. We can reproduce an obliquity evolution similar to that of Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] if we integrate the system with a set of initial conditions that differs from the Cassini state. However the thousand-year oscillations in the obliquity disappear if we use initial conditions corresponding to the equilibrium position of the Cassini state. This result indicates that planetary perturbations do not force short-period, large amplitude oscillations in the obliquity of Mercury. In the absence of excitation processes on short timescales, Mercury's obliquity will remain quasi-constant, suggesting that one of the important conditions for the success of Peale's experiment is realized. We show that interpretation of data obtained in support of this experiment will require a precise knowledge of the spin-orbit configuration, and we provide estimates for two of the critical parameters, the instantaneous Laplace plane orientation and the orbital precession rate from numerical fits to ephemeris data. Finally we provide geometrical relationships and a scheme for identifying the correct initial conditions required in numerical integrations involving a Cassini state configuration subject to planetary perturbations.  相似文献   

5.
E.M.A. Chen  F. Nimmo 《Icarus》2011,214(2):779-781
Recently, Tyler [Tyler, R.H., 2009. Geophys. Res. Lett. 36, L15205; Tyler, R., 2011. Icarus, 211, 770-779] proposed that the tide due to an obliquity of greater than 0.1° might drive resonant flow in a liquid ocean at Enceladus, and that dissipation of the ocean’s kinetic energy may be an alternate source for the observed global heat flux. While there is currently no measurement of Enceladus’ obliquity, dissipation is expected to drive the spin pole to a Cassini state. Under this assumption, we find that Enceladus should occupy Cassini state 1 and that the obliquity of Enceladus should be less than 0.0015° for values of the degree-2 gravity coefficient C2,2 between 1.0 × 10−3 and 2.5 × 10−3. Unless there is a significant free obliquity or the gravity coefficient C2,2 has been significantly overestimated, it is unlikely that obliquity-driven flow in a subsurface ocean is the source of the extreme heat on Enceladus.  相似文献   

6.
The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381–393]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The present obliquity of Mercury is very low (less than 0.1°), which led previous studies to always adopt a nearly zero obliquity during the planet’s past evolution. However, the initial orientation of Mercury’s rotation axis is unknown and probably much different than today. As a consequence, we believe that the obliquity could have been significant when the rotation rate of the planet first encountered spin-orbit resonances. In order to compute the capture probabilities in resonance for any evolutionary scenario, we present in full detail the dynamical equations governing the long-term evolution of the spin, including the obliquity contribution.The secular spin evolution of Mercury results from tidal interactions with the Sun, but also from viscous friction at the core-mantle boundary. Here, this effect is also regarded with particular attention. Previous studies show that a liquid core enhances drastically the chances of capture in spin-orbit resonances. We confirm these results for null obliquity, but we find that the capture probability generally decreases as the obliquity increases. We finally show that, when core-mantle friction is combined with obliquity evolution, the spin can evolve into some unexpected configurations as the synchronous or the 1/2 spin-orbit resonance.  相似文献   

8.
Bruce G. Bills  Francis Nimmo 《Icarus》2008,196(1):293-297
The obliquity of Titan is small, but certainly non-zero, and may be used to place constraints on Titan's internal structure. The measured gravity coefficients of Titan imply that it is non-hydrostatic and thus the normal Darwin-Radau approach to determining internal structure cannot be applied. However, if the obliquity is assumed to be tidally damped (that is, in a Cassini state) then combining the obliquity with the measured gravity coefficients allows Titan's moment of inertia to be determined without invoking hydrostatic equilibrium. For polar moment values in the range (0.3<C/MR2<0.4), tidally-damped obliquity values of (0.115°<|ε|<0.177°) result. If the inferred moment value exceeds 0.4, this strongly suggests the presence of a near-surface ice shell decoupled from the interior, probably by a subsurface ocean.  相似文献   

9.
D. Vokrouhlický  W.F. Bottke 《Icarus》2005,175(2):419-434
In this paper, we show that Asteroid (433) Eros is currently residing in a spin-orbit resonance, with its spin axis undergoing a small-amplitude libration about the Cassini state 2 of the proper mode in the nonsingular orbital element sinI/2exp(?Ω), where I the orbital inclination and Ω the longitude of the node. The period of this libration is ?53.4 kyr. By excluding these libration wiggles, we find that Eros' pole precesses with the proper orbital plane in inertial space with a period of ?61.4 kyr. Eros' resonant state forces its obliquity to oscillate with a period of ?53.4 kyr between ?76° and ?89.5°. The observed value of ?89° places it near the latter extreme of this cycle. We have used these results to probe Eros' past orbit and spin evolution. Our computations suggest that Eros is unlikely to have achieved its current spin state by solar and planetary gravitational perturbations alone. We hypothesize that some dissipative process such as thermal torques (e.g., the so-called YORP effect) may be needed in our model to obtain a more satisfactory match with data. A detailed study of this problem is left for future work.  相似文献   

10.
Keiko Atobe 《Icarus》2007,188(1):1-17
We have investigated the obliquity evolution of terrestrial planets in habitable zones (at ∼1 AU) in extrasolar planetary systems, due to tidal interactions with their satellite and host star with wide varieties of satellite-to-planet mass ratio (m/Mp) and initial obliquity (γ0), through numerical calculations and analytical arguments. The obliquity, the angle between planetary spin axis and its orbit normal, of a terrestrial planet is one of the key factors in determining the planetary surface environments. A recent scenario of terrestrial planet accretion implies that giant impacts of Mars-sized or larger bodies determine the planetary spin and form satellites. Since the giant impacts would be isotropic, tilted spins (sinγ0∼1) are more likely to be produced than straight ones (sinγ0∼0). The ratio m/Mp is dependent on the impact parameters and impactors' mass. However, most of previous studies on tidal evolution of the planet-satellite systems have focused on a particular case of the Earth-Moon systems in which m/Mp?0.0125 and γ0∼10° or the two-body planar problem in which γ0=0° and stellar torque is neglected. We numerically integrated the evolution of planetary spin and a satellite orbit with various m/Mp (from 0.0025 to 0.05) and γ0 (from 0° to 180°), taking into account the stellar torques and precessional motions of the spin and the orbit. We start with the spin axis that almost coincides with the satellite orbit normal, assuming that the spin and the satellite are formed by one dominant impact. With initially straight spins, the evolution is similar to that of the Earth-Moon system. The satellite monotonically recedes from the planet until synchronous state between the spin period and the satellite orbital period is realized. The obliquity gradually increases initially but it starts decreasing down to zero as approaching the synchronous state. However, we have found that the evolution with initially tiled spins is completely different. The satellite's orbit migrates outward with almost constant obliquity until the orbit reaches the critical radius ∼10-20 planetary radii, but then the migration is reversed to inward one. At the reversal, the obliquity starts oscillation with large amplitude. The oscillation gradually ceases and the obliquity is reduced to ∼0° during the inward migration. The satellite eventually falls onto the planetary surface or it is captured at the synchronous state at several planetary radii. We found that the character change of precession about total angular momentum vector into that about the planetary orbit normal is responsible for the oscillation with large amplitude and the reversal of migration. With the results of numerical integration and analytical arguments, we divided the m/Mp-γ0 space into the regions of the qualitatively different evolution. The peculiar tidal evolution with initially tiled spins give deep insights into dynamics of extrasolar planet-satellite systems and discussions of surface environments of the planets.  相似文献   

11.
Dynamical evolution of the rotation of Venus   总被引:1,自引:0,他引:1  
By considering the torque of the bodily tides, the effect of the core-mantle viscous coupling and the torque of the atmospheric tides have been obtained by numerical calculation: the evolution of the spin angular velocity and the obliquity of the Venus are calculated numerically with the step-variable Runge-Kutta method of 7th order; and 7 sets of the probable Cytherean spin evolution have been obtained. It is indicated that the present spin state of Venus is the result of long-term evolution within the reasonable ranges of some disposable parameters. The early spin period is between 7 h to 2 d and the corresponding obliquity is about 90 ° ~ 100 °. The effects of the torques of body and atmospheric tides and the core-mantle viscous coupling of Venus on its spin angular velocity could nearly cancel out each other about a billion years ago. Therefore, Venus could have been captured in a spin-orbit resonant state by the gravitational torque of the Earth on the permanent deformation part of Venus; and this resonant state has lasted up to the present time.  相似文献   

12.
The shaking of Mercury’s orbit by the planets forces librations in longitude in addition to those at harmonics of the orbital period that have been used to detect Mercury’s molten core. We extend the analytical formulation of Peale et al. (Peale, S.J., Margot, J.L., Yseboodt, M. [2009]. Icarus 199, 1-8) in order to provide a convenient means of determining the amplitudes and phases of the forced librations without resorting to numerical calculations. We derive an explicit relation between the amplitude of each forced libration and the moment of inertia parameter (B-A)/Cm. Far from resonance with the free libration period, the libration amplitudes are directly proportional to (B-A)/Cm. Librations with periods close to the free libration period of ∼12 years may have measurable (∼arcsec) amplitudes. If the free libration period is sufficiently close to Jupiter’s orbital period of 11.86 years, the amplitude of the forced libration at Jupiter’s period could exceed the 35 arcsec amplitude of the 88-day forced libration. We also show that the planetary perturbations of the mean anomaly and the longitude of pericenter of Mercury’s orbit completely determine the libration amplitudes.While these signatures do not affect spin rate at a detectable level (as currently measured by Earth-based radar), they have a much larger impact on rotational phase (affecting imaging, altimetry, and gravity sensors). Therefore, it may be important to consider planetary perturbations when interpreting future spacecraft observations of the librations.  相似文献   

13.
A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects.The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth.Tides also tend to reduce the planet’s obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a “Cassini state”, where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ∼90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism.This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet’s surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or night disappear at β=90°. The insolation regime passes through several more transitions as β continues to increase toward 180°, but the surface distribution of insolation remains non-uniform in both latitude and longitude.Thus obliquity, like eccentricity, can protect certain areas of the planet from the worst extremes of temperature and solar radiation, and can improve the planet’s habitability. These results also have implications for the direct detectability of extrasolar planets, and for the interpretation of their thermal emissions.  相似文献   

14.
A major goal of the BepiColombo mission to Mercury is the determination of the structure and state of Mercury's interior. Here the BepiColombo rotation experiment has been simulated in order to assess the ability to attain the mission goals and to help lay out a series of constraints on the experiment's possible progress. In the rotation experiment pairs of images of identical surface regions taken at different epochs are used to retrieve information on Mercury's rotation and orientation. The idea is that from observations of the same patch of Mercury's surface at two different solar longitudes of Mercury the orientation of Mercury can be determined, and therefore also the obliquity and rotation variations with respect to the uniform rotation.The estimation of the libration amplitude and obliquity through pattern matching of observed surface landmarks is challenging. The main problem arises from the difficulty to observe the same landmark on the planetary surface repeatedly over the MPO mission lifetime, due to the combination of Mercury's 3:2 spin-orbit resonance, the absence of a drift of the MPO polar orbital plane and the need to combine data from different instruments with their own measurement restrictions.By assuming that Mercury occupies a Cassini state and that the spacecraft operates nominally we show that under worst case assumptions the annual libration amplitude and obliquity can be measured with a precision of, respectively, 1.4 arcseconds (as) and 1.0 as over the nominal BepiColombo MPO lifetime with about 25 landmarks for rather stringent illumination restrictions. The outcome of the experiment cannot be easily improved by simply relaxing the observational constraints, or increasing the data volume.  相似文献   

15.
The dynamics of the spin-orbit interaction of a sphereM 8 and a rotating asymmetrical rigid bodyM a are examined. No restrictions are imposed on the masses, on the orientation of the rotation axis to the orbit plane, or on the orbit eccentricity. The zonal potential harmonics ofM a induce a precession of the spin axis as well as a precession of the orbit plane, the net effect being a uniform precession of the node on an invariant plane normal to the constant total angular momentum of the system. In general, the effect of the tesseral harmonics is to induce short-period perturbations of small amplitude in both the orbital and spin motions. Resonances are shown to exist whenever the orbital and rotational periods are commensurable. In any resonant state a single coordinate is found to represent both orbital and spin perturbations; and the system may be described as trapped in a localized potential well. The resultant spin and orbit librations are in phase with a common period. The relative amplitudes of the spin/orbit modes are determined by the characteristic parameter =M a M s a 2 /3(M a +M s )C, wherea is the semimajor axis of the orbit, andC is the moment of inertia ofM a about the rotation axis. When ga1, the solutions reduce to those for pureorbital resonance, in whichM s librates in an appropriate reference frame while the rotation rate of the asymmetrical body remains constant. In the opposite extreme of 1, the solutions are appropriate to purerotational resonance, in which the orbital motion is unperturbed but the spin ofM a librates. In each of these special cases the equations developed herein on the basis of a single theory are in agreement with those previously determined from separate theories of spin and orbital resonances.  相似文献   

16.
The effect of the Earth??s compression on the physical libration of the Moon is studied using a new vector method. The moment of gravitational forces exerted on the Moon by the oblate Earth is derived considering second order harmonics. The terms in the expression for this moment are arranged according to their order of magnitude. The contribution due to a spherically symmetric Earth proves to be greater by a factor of 1.34 × 106 than a typical term allowing for the oblateness. A linearized Euler system of equations to describe the Moon??s rotation with allowance for external gravitational forces is given. A full solution of the differential equation describing the Moon??s libration in longitude is derived. This solution includes both arbitrary and forced oscillation harmonics that we studied earlier (perturbations due to a spherically symmetric Earth and the Sun) and new harmonics due to the Earth??s compression. We posed and solved the problem of spinorbital motion considering the orientation of the Earth??s rotation axis with regard to the axes of inertia of the Moon when it is at a random point in its orbit. The rotation axes of the Earth and the Moon are shown to become coplanar with each other when the orbiting Moon has an ecliptic longitude of L ? = 90° or L ? = 270°. The famous Cassini??s laws describing the motion of the Moon are supplemented by the rule for coplanarity when proper rotations in the Earth-Moon system are taken into account. When we consider the effect of the Earth??s compression on the Moon??s libration in longitude, a harmonic with an amplitude of 0.03?? and period of T 8 = 9.300 Julian years appears. This amplitude exceeds the most noticeable harmonic due to the Sun by a factor of nearly 2.7. The effect of the Earth??s compression on the variation in spin angular velocity of the Moon proves to be negligible.  相似文献   

17.
Astronomical observations and cosmochemical calculations suggest that the planet Mercury may be composed of materials which condensed at relatively high temperatures in the primitive solar nebula and may have a basaltic crust similar to parts of the moon. These findings, plus the long standing inference that Mercury is much richer in metallic iron than the other terrestrial planets, provide important constraints which we apply to models of the thermal evolution and density structure of the planet. The thermal history calculations include explicitly the differing thermal properties of iron and silicates and account for core segregation, melting and differentiation of heat sources, and simulated convection during melting. If the U and Th abundances of Mercury are taken from the cosmochemical model of Lewis, then the planet would have fully differentiated a metal core from the silicate mantle for all likely initial temperature distributions and heat transfer properties. Density distributions for the planet are calculated from the mean density and estimates of the present-day temperature. For the fully differentiated model, the moment of inertia C/MR2 is 0.325 (J2=0.302×10?6). For models with lower heat source abundances, the planet may not yet have differentiated. The density profiles for such models give C/MR2=0.394 (J2=0.487×10?6). These results should be useful for preliminary interpretation of the Mariner 10 measurements of Mercury's gravitational field.  相似文献   

18.
In this paper it is derived that the libration of Mercury can be described by where Φ0 is the unknown libration amplitude, M is Mercury's mean anomaly and K=−9.483. Φ0 can be determined by comparing pairs of images of the same landmarks taken by an orbiter at different positions of Mercury. If the angle between the orbit plane of a polar orbiter and Mercury's line of periapsis is between −60° and 60° and if one landmark at the equator is imaged per day with a relative precision of , then the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of or better, which is sufficient to answer the question whether Mercury has a solid or fluid core.  相似文献   

19.
B.G. Bills  F. Nimmo 《Icarus》2011,213(2):496-214
We examine models of secular variations in the orbit and spin poles of Ceres and Vesta, the two most massive bodies in the main asteroid belt. If the spin poles are fully damped, then the current values of obliquity, or angular separation between spin and orbit poles, are diagnostic of the moments of inertia and thus indicative of the extent of differentiation of these bodies. Using existing shape models and assuming uniform density, the present obliquity values are predicted to be 12.31° for Ceres and 15.66° for Vesta. Part of this difference is related to differing orbital inclinations; a more centrally condensed internal structure would yield more rapid spin pole precession, and larger obliquity. Time scales for tidal damping are expected to be rather long. However, at least for Vesta, current estimates of the spin pole location are consistent with its obliquity being fully damped. When the degree two gravity coefficients and spin pole orientations are determined by the Dawn spacecraft, it will allow accurate determination of the moments of inertia of these bodies, assuming the obliquities are damped.  相似文献   

20.
In this paper, series of a rigid model of Mercury nutations are computed. The method used is based on the calculation of the forces produced by the Sun on Mercury as considered as a rigid body. In order to take into account the indirect effects coming from the orbit perturbations of Mercury, we used the ephemerides VSOP87 (Bretagnon and Francou, 1988). Due to non-negligible difference between the principal moment of inertia A and B in the case of Mercury, we compute also terms due to the triaxiality in addition to the general terms coming from J 2. With a truncation level of 10 –3 mas (milliarcsecond), related to the present-day precision of the Mercury precession constant, 173 terms in longitude ( sin ) and 166 terms in obliquity () are computed. The value of the dynamical flattening used is H D = (CA)/C = 2.3 × 10–4 (Anderson, 1987).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号