首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The mineralogy of Mars is well understood on a qualitative level at a global scale due to satellite data. Quantitative analysis of visible and near-infrared (VNIR) satellite data is a desirable but nontrivial task, due partly to the nonlinearity of VNIR reflectance spectra from the mineral mixtures of the Martian surface. In this study, we investigated the use of the Hapke radiative transfer model to generate linearly mixed single scattering albedo data from nonlinearly mixed VNIR reflectance data and then quantitatively analyzed them using the linear spectral mixture model. Simplifications to the Hapke equation were tested accounting for variables that would be unknown when using satellite data. Mineral mixture spectra from the RELAB spectral library were degraded to test the robustness of the unmixing technique in the face of data that mimic some of the complexities of satellite spectral data collected at Mars. A final test was performed on spectra from shergottite meteorites to assess the technique against real Martian mineral mixtures. The simplified Hapke routine produced robust abundance estimates within 5–10% accuracy when applied to laboratory standard spectra from the synthetic mixtures of igneous minerals in agreement with previous studies. The results of tests involving degraded data to mimic the low spectral contrast of the Martian surface and the lack of a priori knowledge of the constituent mineral spectral endmembers, however, were less encouraging, with errors in abundance estimation greater than 25%. These results cast doubt on the utility of Hapke unmixing for the quantitative analysis of VNIR data of the surface of Mars.  相似文献   

2.
Hao Zhang  Kenneth J. Voss 《Icarus》2011,215(1):27-33
In a recent paper Hapke et al. (Hapke, B., Shepard, M., Nelson, R., Smythe, W., Piatek, J. [2009]. Icarus 199, 210-218) performed bi-directional reflectance measurements on closely-packed particulate surfaces of micrometer-sized particles and compared these with both the Hapke IMSA photometric model, and a numerical radiative transfer algorithm, the MDYZ (Mishchenko, M., Dlugach, J., Yanovitskij, E., Zakharova, N. [1999a]. J. Quant. Spectrosc. Radiat. Trans. 63, 409-432). To account for the effects of close packing, Hapke et al. applied a diffraction truncation scheme to remove the diffraction spike and supplied the renormalized single scattering phase function to the IMSA. They found that the IMSA prediction is a better match with measurement than that of MDYZ. In this work we demonstrate that the diffraction truncation procedure outlined by Hapke et al. contains an error. By following Hapke et al.’s intended truncation scheme, we have found that the IMSA model is not sufficiently anisotropic to describe the reflectance pattern of measurements on surface reflectance of closely packed large spherical particles.  相似文献   

3.
For in situ astrobiological studies of Mars or other planets, we must employ strategies that will enable us to verify whether our approach and prototype instruments are actually capable of distinguishing life from non-life. This must be done against a background of rigorously conducted scientific characterization of the environment or sample types being considered for measurement by the instruments under development. In this study we show how a combination of mineralogical and textural features can be considered a biosignature in an early Mars analogue environment, Death Valley, California. We propose that it is a combination of features in context of the geologic matrix which allows determination of biogenicity to be made. Polymineralic microbialites (organosedimentary formations constructed by microorganisms) from a spring pool at Badwater, within Death Valley National Park, are composed of alternating biogenic and abiogenic minerals in a distinct triplet sequence related to wet and dry seasons. A microbial community, occurring as a black biofilm, produced paired layers of two different mineral types: manganese oxyhydroxides and calcite. These biogenic layers are separated from the next pair by a gypsum layer and appear to be laid down in the wet season, with the gypsum (a mineral positively identified on Mars) precipitating in the dry part of the year, abiogenically (i.e., not dependent on microbial metabolic activity for its deposition). In addition, textural features (smaller grain size and less geometric morphology) unique to the biogenic vs the abiogenic layers, were consistently observed so that texture served as a biosignature in this environment.  相似文献   

4.
L.J. Preston  G.K. Benedix 《Icarus》2008,198(2):331-350
Surface features observed on Mars and evidence from martian meteorites both suggest that hydrothermal systems have operated in the crust of the planet. Hydrothermal systems are a potential habitat for living organisms and identifying these on Mars is, therefore, important in the search for life beyond the Earth. One of the surface expressions of hydrothermal systems on Earth are silica sinters, deposited during the cooling of hydrothermal solutions. In this paper we present analyses of the mineralogy, textures, chemistry and organic chemistry of silica sinters from two very different geothermal provinces, Waiotapu, New Zealand and Haukadalur, Iceland, in order to determine common features by which silica sinters can be identified. Infrared reflectance spectroscopy was utilised in combination with textural studies to evaluate the mineralogy of sinter deposits in terms of the abundances of different polymorphs of SiO2. Concentrations of organic molecules, principally lipids, within regions of the sinters in which there is textural evidence for micro-organisms were identified in the infrared spectral data and their presence was confirmed using gas chromatography mass spectroscopy. The results of this study indicate that reflectance spectra in the wavelength region from 2.5 to 14 μm, when calibrated against natural terrestrial analogues, can be used to identify silica sinters, as well as the possible presence of recent microbial communities on Mars.  相似文献   

5.
The Thermal Emission Spectrometer (TES) has observed a high-silica material in the dark regions of Mars that is spectrally similar to obsidian glass and may have a volcanic origin. An alternate interpretation is that the spectrally amorphous material consists of clay minerals or some other secondary material, formed by chemical alteration of surface rocks. The regions where this material is observed (e.g., Acidalia Planitia) have relatively high spectral contrast, suggesting that the high-silica material exists as coarse particulates, indurated soils or cements, within rocks, or as indurated coatings on rock surfaces. The geologic interpretation of this spectral result has major implications for understanding magmatic evolution and weathering processes on Mars. One of the complications in interpreting spectral observations of glasses and clay minerals is that both are structurally and compositionally complex. In this study, we perform a detailed spectroscopic analysis of indurated smectite clay minerals and relate their thermal emission spectral features to structural and crystal chemical properties. We examine the spectral similarities and differences between smectite clay minerals and obsidian glass from a structural-chemical perspective, and make further mineralogical interpretations from previous TES results. The results suggest that neither smectite clays nor any clay mineral with similar structural and chemical properties can adequately explain TES observations of high-silica materials in some martian dark regions. If the spectrally amorphous materials observed by TES do represent an alteration product, then these materials are likely to be poorly crystalline aluminosilicates. While all clay minerals have Si/O ratios ?0.4, the position of the emissivity minimum at Mars suggests a Si/O ratio of 0.4-0.5. The spectral observation could be explained by the existence of a silica-rich alteration product, such as Al- or Fe-bearing opal, an intimate physical mixture of relatively pure silica and other aluminosilicates (such as clay minerals or clay precursors), or certain zeolites. The chemical alteration of basaltic rocks on Mars to phyllosilicate-poor, silica-rich alteration products provides a geologically reasonable and consistent explanation for the global TES surface mineralogical results.  相似文献   

6.
The Hapke (Hapke, B. [1981]. J. Geophys. Res. 86, 3039-3054) photometric model and its modifications are widely used to characterize telescopic, spacecraft, and laboratory observations of the bidirectional reflectance of particulate surfaces. Following work and methods laid out in a companion paper (Helfenstein, P., Shepard, M.K. [2011]. Icarus, in press), we deconstruct the Hapke model and, separating all empirical and ad hoc parameters (opposition surge, particle phase function, surface roughness), combine them into a single parameter called the surface phase function, F(α). We illustrate how to extract this function from scattering data sets acquired with the Bloomsburg University Goniometer (BUG). We show how this method can be used to rapidly and accurately characterize bidirectional reflectance data sets from laboratory and spacecraft measurements, often giving better fits to the data. We examine samples with strong color contrasts in different wavelengths. This allows us to examine the exact same surface, changing only the albedo to investigate how the amplitude and the detailed shape of the surface phase function might systematically depend on wavelength and albedo. We also examine the changes in scattering behavior that result when samples are compacted and find the surface phase function and single scattering albedo to be significantly changed. We suggest that these observations support the hypothesis that much of the scattering behavior attributed to the single particle phase function is instead cause by the surface micro-structure.  相似文献   

7.
Reliable quantitative mapping of minerals exposed on Vesta's surface is crucial for understanding the crustal composition, petrologic evolution, and surface modification of the howardite, eucrite, and diogenite (HED) parent body. However, mineral abundance estimates derived from visible–near infrared (VIS–NIR) reflectance spectra are complicated by multiple scattering, particle size, and nonlinear mixing effects. Radiative transfer models can be employed to accommodate these issues, and here we assess the utility of such models to accurately and efficiently determine modal mineralogy for a suite of eucrite and olivine‐bearing (harzburgitic) diogenite meteorites. Hapke and Shkuratov radiative transfer models were implemented to simultaneously estimate mineral abundances and particle size from VIS–NIR reflectance spectra of these samples. The models were tested and compared for laboratory‐made binary (pyroxene–plagioclase) and ternary mixtures (pyroxene–olivine–plagioclase) as well as eucrite and diogenite meteorite samples. Results for both models show that the derived mineral abundances are commonly within 5–10% of modal values and the estimated particle sizes are within the expected ranges. Results for the Hapke model suggest a lower detection limit for olivine in HEDs when compared with the Shkuratov model (5% versus 15%). Our current implementation yields lower uncertainties in mineral abundance (commonly <5%) for the Hapke model, though both models have an advantage over typically used parameters such as band depth, position, and shape in that they provide quantitative information on mineral abundance and particle size. These results indicate that both the Hapke and Shkuratov models may be applied to Dawn VIR data in a computationally efficient manner to quantify the spatial distribution of pyroxene, plagioclase, and olivine on the surface of Vesta.  相似文献   

8.
Typical variations in the opposition effect morphology of laboratory samples at optical wavelengths are investigated to probe the role of the textural properties of the surface (roughness, porosity and grain size). A previously published dataset of 34 laboratory phase curves is re-analyzed and fit with several morphological models. The retrieved morphological parameters that characterize the opposition surge, amplitude, width and slope (A, HWHM and S respectively) are correlated to the single scattering albedo, the roughness, the porosity and the grain size of the samples. To test the universality of the laboratory samples’ trends, we use previously published phase curves of planetary surfaces, including the Moon, satellites and rings of the giant planets. The morphological parameters of the surge (A and HWHM) for planetary surfaces are found to have a non-monotonic variation with the single scattering albedo, similar to that observed in asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94–105), which is unexplained so far. The morphological parameters of the surge (A and HWHM) for laboratory samples seem to exhibit the same non-monotonic variation with single scattering albedo. While the non-monotonic variation with albedo was already observed by Nelson et al. (Nelson, R.M., Hapke, B.W., Smythe, W.D., Hale, A.S., Piatek, J.L. [2004]. Planetary regolith microstructure: An unexpected opposition effect result. In: Mackwell, S., Stansbery, E. (Eds.), Proc. Lunar Sci. Conf. 35, p. 1089), we report here the same variation for the angular width.  相似文献   

9.
We have measured the bi-directional reflectance phase function on selected meteorite samples (1 howardite, 1 eucrite, 1 diogenite, Orgeuil (CI), Tagish Lake (CC), Allende (CV), Lunar meteorite (MAC 88105), Forest Vale (H4)) covering part of the geochemical and petrologic diversity expected for asteroid surfaces. Samples were measured as powders, for which we achieved reflectance measurements from phase angles down to 3°, and up to 150°, at five different wavelengths covering the VIS–NIR spectral region. The data were fitted by the photometric model of Hapke (Hapke, B. [1993]. Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge). The physical sense of the retrieved Hapke’s parameters seems unclear but they permit to interpolate the data to any observation geometry. Strong opposition effects were observed for all samples. The absolute intensity of this effect appears moderately variable among our sample suite, and is not correlated with the average sample reflectance. We interpret this observation as Shadow-Hiding Opposition Effect (SHOE). In the case of samples presenting intense absorption bands (the Fe crystal field band at 1 μm of HED and the ordinary chondrite), we observe significant dependence of band depth to phase angle, up to 70°, even for moderate variation of phase angle. In addition, a general trend of spectral reddening with phase angle is observed. This reddening, linear with phase angle, is present in all meteorites studied. This behavior is not predicted by classical radiative theories. We propose that small-scale roughness (of the order of or below the wavelength) may induce such a behavior.  相似文献   

10.
In conjunction with a companion paper (Shepard, M.K., Helfenstein, P. [2011]. Icarus, submitted for publication), we derive, test, and apply a detailed approach for visualizing the phase angle dependence of light scattering in particulate soils from both whole-disk and disk-resolved observations. To reduce the number of model parameters and provide stronger constraints on model fits, we combine Hapke’s (Hapke, B. [2008]. Icarus 195, 918-926) recent correction for effects of porosity with his (Hapke, B. [1986]. Icarus 67, 264-280) model of the shadow hiding opposition effect. We further develop our method as a tool for least-squares fitting of Hapke’s model to photometric data. Finally, we present an improved method for estimating uncertainties in retrieved values of Hapke model parameters. We perform a preliminary test of the model on spectrogoniometric measurements from three selected laboratory samples from Shepard and Helfenstein (Shepard, M.K., Helfenstein, P. [2007]. J. Geophys. Res. 112 (E03001), 17). Our preliminary suite of test samples is too small and selective to permit the drawing of general conclusions. However, our results suggest that Hapke’s porosity correction improves the fidelity of fits to samples composed of low- and moderate-albedo particles and may allow for more reliable retrieval of porosity estimates in these materials. However, we find preliminary evidence that in high-albedo surfaces, the effects of porosity may be difficult to detect.  相似文献   

11.
J Warell 《Icarus》2004,167(2):271-286
A comparison of the photometric properties of Mercury and the Moon is performed, based on their integral phase curves and disk-resolved image data of Mercury obtained with the Swedish Vacuum Solar Telescope. Proper absolute calibration of integral V-band magnitude observations reveals that the near-side of the Moon is 10-15% brighter than average Mercury, and 0-5% brighter for the “bolometric” wavelength range 400-1000 nm. As shown, this is supported by recent estimates of their geometric albedos. Hapke photometric parameters of their surfaces are derived from identical approaches, allowing a contrasting study between their surface properties to be performed. Compared to the average near-side Moon, Mercury has a slightly lower single-scattering albedo, an opposition surge with smaller width and of marginally smaller amplitude, and a somewhat smoother surface with similar porosity. The width of the lobes of the single-particle scattering function are smaller for Mercury, and the backward scattering anisotropy is stronger. In terms of the double Henyey-Greenstein b-c parameter plot, the scattering properties of an average particle on Mercury is closer to the properties of lunar maria than highlands, indicating a higher density of internal scatterers than that of lunar particles. The photometric roughness of Mercury is well constrained by the recent study of Mallama et al. (2002, Icarus 155, 253-264) to a value of about 8°, suggesting that the surfaces sampled by the highest phase angle observations (Borealis, Susei, and Sobkou Planitia) are lunar mare-like in their textural properties. However, Mariner 10 disk brightness profiles obtained at intermediate phase angles indicate a surface roughness of about twice this value. The photometric parameters of the Moon are more difficult to constrain due to limited phase angle coverage, but the best Hapke fits are provided by rather small surface roughnesses. Better-calibrated, multiple-wavelength observations of the integral and disk-resolved brightnesses of both bodies, and obtained at higher phase angle values in the case of the Moon, are urgently needed to arrive at a more consistent picture of the contrasting light scattering properties of their surfaces.  相似文献   

12.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   

13.
The past 4 decades of Mars exploration have provided much information about the Mars surface, when its interior structure remains relatively poorly constrained. Today available data are compatible with a large range of model parameters. Seismology is able to provide valuable additional data but the number of seismographs will likely be quite limited, specially in the early-stage of future Mars seismic networks. It is thus of importance to be able to correctly isolate effects induced by the crust structure. Mars topography is characterized by spectacular reliefs like the Tharsis bulge or the Hellas basin and by the so-called “Mars dichotomy”: the north hemisphere is made up of low-altitude plains above a relatively thin crust when the south hemisphere is characterized by a thick crust sustaining high reliefs. The aim of this paper is to study the effects induced on seismograms by the topography of the surface and crust-mantle discontinuities. Synthetic seismograms were computed using the coupled spectral element-modal solution method, which reduces the numerical cost by limiting the use of the spectral element method to the regions where lateral variations, like the presence of a topography, are considered. Due to numerical cost, this study is limited to long period and thus focuses on surface waves, mainly on long period Rayleigh waves. We show that reliefs like the Tharsis bulge or the Hellas basin can induce an apparent velocity anomaly up to 0.5% when only the surface topography is introduced. Apparent anomalies can raise up to 1.0% when the surface topography is fully compensated by a mirror-image topography of the crust-mantle discontinuity. Travel-time of surface wave are systematically increased for seismometers in the north hemisphere of Mars and decreased in the south hemisphere. When comparing effects on seismograms by the Earth and Mars topography, we found them to be larger for the Earth. It is due to the fact that we work with a seismic velocity model of Mars with a mean crust thickness of 110 km when the crust thickness has a mean value of 50 km for the Earth. When changing the Mars model for a thinner crust with a mean thickness of 50 km, effects by the topography on Mars seismograms becomes of the same order when not larger than what is observed on the Earth.  相似文献   

14.
We have constructed an experiment to perform bidirectional reflectance distribution function (BRDF) measurements of laboratory samples, and have used the experiment to characterize a sample of JSC-1 lunar regolith simulant. Characterizations relied on in-plane BRDF measurements in visible and near-infrared (NIR) bandpasses. The optical properties of the simulant sample were found to be similar to those observed for bright, lunar highland regions. Reflectance models (Hapke 1981. Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 86(B4), 3,039−3,054; 1984. Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness. Icarus 59, 41−59; 1986. Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect. Icarus 67, 264−280; 2002. Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523−534) made excellent fits to fixed incidence angle, variable emission angle data sets. However, the models were not found to extrapolate well to fixed, near-zero phase angle data at varying incidence angles, and no solutions were found that provided simultaneous, high quality fits to the two types of data sets. Except for the single-scattering albedo, the best-fit parameters of the fixed incidence angle data were statistically the same in the visible and NIR. Correlations between the reflectance model parameters were systematically examined, and strong correlations were found between single-scattering albedo and the two two-stream Henyey-Greenstein scattering parameters and, to a lesser extent, the small-scale mean surface roughness.  相似文献   

15.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   

16.
Stereo analysis of images obtained during the 2001 flyby of Comet Borrelly by NASA's Deep Space 1 (DS1) probe allows us to quantify the shape and photometric behavior of the nucleus. The shape is complex, with planar facets corresponding to the dark, mottled regions of the surface whereas the bright, smooth regions are convexly curved. The photometric as well as textural differences between these regions can be explained in terms of topography (roughness) at and below the image resolution, without invoking significant variations in single-particle properties; the material on Borrelly's surface could be quite uniform. A statistical comparison of the digital elevation models (DEMs) produced from the three highest-resolution images independently at the USGS and DLR shows that their difference standard deviation is 120 m, consistent with a matching error of 0.20 pixel (similar to reported matching accuracies for many other stereo datasets). The DEMs also show some systematic differences attributable to manual versus automatic matching. Disk-resolved photometric modeling of the nucleus using the DEM shows that bright, smooth terrains on Borrelly are similar in roughness (Hapke roughness θ=20°) to C-type asteroid Mathilde but slightly brighter and more backscattering (single-scattering albedo w=0.056, Henyey-Greenstein phase parameter g=−0.32). The dark, mottled terrain is photometrically consistent with the same particles but with roughnesses as large as 60°. Intrinsically darker material is inconsistent with the phase behavior of these regions. Many local radiance variations are clearly related to topography, and others are consistent with a topographic explanation; one need not invoke albedo variations greater than a few tens of percent to explain the appearance of Borrelly.  相似文献   

17.
In deriving the physical properties of asteroids from their photometric data, the scattering law plays an important role, although the shape variations of asteroids result in the main variations in lightcurves. By following the physical behaviors of light reflections, Hapke et al. deduced complex functions to represent the scattering process, however, it is very hard to accurately simulate the surface scattering law in reality. For simplicity, other numerical scattering models are presented for efficiently calculating the physical properties of asteroids, such as the Lommel-Seeliger(LS) model. In this article,these two models are compared numerically. It is found that in some numerical applications the LS model in simple form with four parameters can be exploited to replace the Hapke model in complex form with five parameters. Furthermore, the generated synthetic lightcurves by the Cellinoid shape model also show that the LS model can perform as well as the Hapke model in the inversion process. Finally, by applying the Principal Component Analysis(PCA) technique to the parameters of the LS model, we present an efficient method to classify C and S type asteroids, instead of the conventional method using the parameters of the Hapke model.  相似文献   

18.
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ∼73° latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix.  相似文献   

19.
Paul G. Lucey  Sarah K. Noble 《Icarus》2008,197(1):348-353
We compare laboratory measurements of the optical effects of nanophase iron on near-IR reflectance spectra of transparent silica gel infused with small iron particles [Noble, S.K., Pieters, C.M., Keller, L.P., 2007. Icarus 192, 629-642] with a radiative transfer model of the process [Hapke, B., 2001. J. Geophys. Res. 106 (E5), 10039-10074]. We find that the measurements exhibit reddening and darkening effects of nanophase (<50 nm) iron particles, a darkening effect of somewhat larger particles (>50 nm) and mixing effects of silica gel particles of varying total iron abundance. The radiative transfer model reproduces the effects of nanophase iron within the experimental uncertainties.  相似文献   

20.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号