首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS) instruments are used to assess the mineralogic and dust cover characteristics of landing regions proposed for the Mars Science Laboratory (MSL) mission. Candidate regions examined in this study are Eberswalde crater, Gale crater, Holden crater, Mawrth Vallis, Miyamoto crater, Nili Fossae Trough, and south Meridiani Planum. Compositional units identified in each region from TES and THEMIS data are distinguished by variations in hematite, olivine, pyroxene and high-silica phase abundance, whereas no units are distinguished by elevated phyllosilicate or sulfate abundance. Though phyllosilicate minerals have been identified in all sites using near-infrared observations, these minerals are not unambiguously detected using either TES spectral index or deconvolution analysis methods. For some of the sites, small phyllosilicate outcrop sizes relative to the TES field of view likely hinder phyllosilicate mineral detection. Porous texture and/or small particle size (<∼60 μm) associated with the phyllosilicate-bearing surfaces may also contribute to non-detections in the thermal infrared data sets, in some areas. However, in Mawrth Vallis and Nili Fossae, low phyllosilicate abundance (<10-20 areal %, depending on the phyllosilicate composition) is the most likely explanation for non-detection. TES data over Mawrth Vallis indicate that phyllosilicate-bearing surfaces also contain significant concentrations (>15%, possibly up to ∼40%) of a high-silica phase such as amorphous silica or zeolite. High-silica phase abundance over phyllosilicate-bearing surfaces in Mawrth Vallis is higher than that of surrounding surfaces by 10-15%. With the exception of these high-silica surfaces in Mawrth Vallis, regions examined in this study exhibit similar bulk mineralogical compositions to that of most low-albedo regions on Mars; the MSL scientific payload will thus be able to provide important information on surface materials typical of low-albedo regions in addition to investigating the origin of phyllosilicate and/or sulfate deposits. With the exception of Gale crater, all of the landing sites have relatively low dust cover compared to classic high-albedo regions (Tharsis, Arabia and Elysium) and to previous landing sites in Gusev Crater, Utopia Planitia, and Chryse Planitia.  相似文献   

2.
Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ=0.3-5 μm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ=6-35 μm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m−2 K−1 s−1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both.  相似文献   

3.
Aluminous clay deposits on Mars are recognized from remotely sensed infrared spectral features similar to those of montmorillonite, beidellite, and/or kaolinite. The nature of aluminous clay deposits on Mars is of interest because they likely indicate a different formation mechanism than that of Fe–Mg clays, which are widespread on Mars and likely alteration products of the Fe–Mg-rich basaltic crust. The near-infrared reflectance spectra of aluminous martian clay deposits frequently display characteristics typical of both montmorillonite and kaolinite. The question arises whether such mixed character is due to the existence of end-member phases or to kaolinite–smectite mixed-layer (K–S). The issue is relevant because K–S implies the existence of a smectite precursor that alters into kaolinite, and thus constrains the timing and intensity of the alteration processes that generates it. A mixture of kaolinite and smectite end-members may indicate locally heterogeneous alteration processes, or alternatively, could result from the physical mixing of altered materials of different provenance. A group of natural K–S samples and synthetic kaolinite/smectite mixtures of known proportion, all of which had been thoroughly characterized in previous work using several analytical techniques, were investigated here using near-infrared (NIR) spectroscopy. The NIR spectral features correlate well with their kaolinite–smectite relative proportions. The shape of spectral features attributed to Al–OH in K–S is subtly different from those in physical mixtures of kaolinite and smectite. Based on qualitative comparison, some regions on Mars appear to have spectral signatures similar to K–S. We also applied a quantitative technique using the second derivative of spectra. In this technique, plots of the height of the features at (λ=) 2.21 μm (band present in kaolinite and montmorillonite) and 2.17 μm (kaolinite only) were able to discriminate between K–S and kaolinite–smectite physical mixtures, as they generated correlations with different slopes. The method of discrimination was applied to Mars spectra, which resulted in reasonable evidence for the existence of K–S in Nili Fossae and Mawrth Vallis, and mixtures of end-members in Mawrth Vallis and Leighton Crater. This is one of the first times that evidence for mixed-layer clay minerals, and particularly K–S, on Mars has been gathered. The ability to detect mixed-layer clays is an important step forward for further development of our understanding of the processes that generated clay on Mars.  相似文献   

4.
Diverse phyllosilicate deposits discovered previously in the Nili Fossae region with near infrared reflectance data are a window into the complex history of aqueous alteration on Mars. In this work, we used thermal infrared data from the Thermal Emission Spectrometer (TES) in combination with near infrared data from the Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) to better constrain the mineralogy and geologic origin of these deposits. We developed a TES spectral index for identification of clay minerals, which correctly identifies the phyllosilicates in the Nili Fossae area and points to several other interesting deposits in the Syrtis Major region. However, detailed inspection of the TES spectral features of Nili Fossae phyllosilicates shows a feature at low wavenumbers (350-550 cm−1) that is not an exact match to any specific Fe3+-, Al-, or Mg-rich phyllosilicate phase. Instead, the feature is more similar to basaltic glass and may indicate that the phyllosilicates in this region are: (1) rich in Fe2+ (based on similarity to trends seen in laboratory data of clay minerals), (2) poorly crystalline/extremely disordered, and/or (3) present within a matrix of actual basalt glass. This feature is similar to spectral features seen in altered rocks in the Columbia Hills region of Gusev Crater by previous authors. By calibrating measured spectral index values against mathematical spectral mixtures of typical martian dark surfaces and known abundances of alteration minerals, we are able to estimate an enrichment in abundance of alteration minerals in the altered surfaces. Many dark, Noachian deposits in the Nili Fossae area are enriched phyllosilicates by 20-30% (±10-15%) relative to dark, volcanic surfaces in the same region. The distribution and abundance of these phases indicates that alteration in the region was pervasive, but did not completely erase the original mineralogy of what was likely an Fe-rich basalt protolith. As a group, the Nili Fossae phyllosilicate deposits are fundamentally different from those found in the Mawrth Vallis region. Nili Fossae deposits have strong thermal infrared features related to admixed pyroxene, plagioclase, and occasionally olivine, whereas the Mawrth Vallis deposits contain no mafic minerals. Comparison of TES and OMEGA data also illustrates some more general differences between the datasets, including the impact of physical character of the martian surface on detectability of minerals in each spectral range.  相似文献   

5.
The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral observations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that the ∼1009 nm spectral feature is not a direct reflection of their silica-rich nature. Based on comparisons with spectral databases, we hypothesize that the presence of H2O or OH, either free (as water ice), adsorbed or bound in a mineral structure, is responsible for the spectral feature observed by Pancam. The Gertrude Weise soil, which is nearly pure opaline silica, may have adsorbed water cold-trapped on mineral grains. The origin of the ∼1009 nm Pancam feature observed in the silica-rich nodular outcrops may result from the presence of additional hydrated minerals (specific sulfates, halides, chlorides, sodium silicates, carbonates or borates). Using the ∼1009 nm feature with other spectral parameters as a “hydration signature” we have mapped the occurrence of hydrated materials along the extent of Spirit’s traverse across the Columbia Hills from West Spur to Home Plate (sols 155-1696). We have also mapped this hydration signature across large panoramic images to understand the regional distribution of materials that are spectrally similar to the silica-rich soil and nodular outcrops. Our results suggest that hydrated materials are common in the Columbia Hills.  相似文献   

6.
Stéphane Erard  Wendy Calvin 《Icarus》1997,130(2):449-460
About 15 areas were observed in the equatorial regions of Mars by the infrared spectrometers IRS (Mariner 6 and 7) and ISM (Phobos-2). The comparison between the spectra shows a remarkable consistency between two data sets acquired 20 years apart and calibrated independently. This similarity demonstrates the accuracy of ISM calibration above 2 μm, except for a possible stray light contribution above 2.6 μm, on the order of ∼1–2% of the solar flux at 2.7 μm. Most differences in spectral shapes are related to differences in spectral/spatial resolution and viewing geometries. No important variation in surface properties is detected, except for a spot in southern Arabia Terra which has a much deeper hydration feature in IRS spectra; differences in viewing geometries and spatial resolutions do not seem to account for this difference that could result from shifting or dehydration of surface materials. Composite spectra of several types of bright and dark materials are computed by modeling the thermal emission and are completed with telescopic spectra in the visible range. Modeled reflectance in the 3.0–5.7 μm range is consistent with basalts and palagonites. The bright regions and analog palagonite spectra are different from hematite in this range, but resemble several phyllosilicates. We infer that (1) although hematite dominates the spectra in the 0.4- to 2.5-μm range, the silicate-clay host is spectrally active beyond 3 μm and can be identified from this domain; (2) phyllosilicates such as montmorillonite or smectite may be abundant components of the martian soils, although the domain below 3 μm lacks the characteristic features of the most usual terrestrial clay minerals.  相似文献   

7.
A. Gaudin  E. Dehouck  N. Mangold 《Icarus》2011,216(1):257-268
Phyllosilicates on Mars are widespread in the ancient crust suggesting the presence of liquid water at the martian surface and therefore warmer conditions during its early history. However, the role of the ancient climate in the alteration process, which produced these phyllosilicates, remains under debate, because similar mineral assemblages can be produced by hydrothermal alteration at depth. This paper focuses on the origin of coincident outcrops of Fe/Mg bearing phyllosilicates and Al-bearing phyllosilicates, which are observed in several regions of Mars. We performed a detailed mineralogical comparison between a section in Nili Fossae, Mars, and a weathering profile located at Murrin Murrin, Western Australia. The Murrin Murrin profile is developed in Archaean serpentinized peridotite massifs over a ∼40 m thick sequence. It has three alteration zones: the serpentine mineral saprolite is found at the bottom, immediately overlain by Fe/Mg-bearing smectites and then Al-bearing phyllosilicates (kaolinite) mixed with iron hydroxides. This example illustrates how Al-dominated minerals can derive from the alteration of initially Al-poor ultramafic rocks by the intense leaching of Mg2+. This mineralogical sequence is very similar to that detected locally in Nili Fossae by orbital spectroscopy. By analogy, we propose that the mineral assemblage detected on Mars is the result of long-term weathering, and thus could be the best evidence of past weathering as a direct result of a climate significantly warmer than at present.  相似文献   

8.
Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low‐temperature (20 °C) one‐dimensional (1‐D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low‐temperature (~20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica‐rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water–rock interaction that must have led to the formation of the carbonates ~ 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.  相似文献   

9.
The mineralogical composition of the Martian surface is investigated by a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM) of the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) imaging spectrometer onboard Mars Express. OMEGA has fully covered the surface of the red planet at medium to low resolution (2–4 km per pixel). Several areas have been imaged at a resolution up to 300 m per pixel. One difficulty in the data processing is to extract the mineralogical composition, since rocks are mixtures of several components. MELSUM is an algorithm that selects the best linear combination of spectra among the families of minerals available in a reference library. The best fit of the observed spectrum on each pixel is calculated by the same unmixing equation used in the classical Spectral Mixture Analysis (SMA). This study shows the importance of the choice of the input library, which contains in our case 24 laboratory spectra (endmembers) of minerals that cover the diversity of the mineral families that may be found on the Martian surface. The analysis is restricted to the 1.0–2.5 μm wavelength range. Grain size variations and atmospheric scattering by aerosols induce changes in overall albedo level and continuum slopes. Synthetic flat and pure slope spectra have therefore been included in the input mineral spectral endmembers library in order to take these effects into account. The selection process for the endmembers is a systematic exploration of whole set of combinations of four components plus the straight line spectra. When negative coefficients occur, the results are discarded. This strategy is successfully tested on the terrestrial Cuprite site (Nevada, USA), for which extensive ground observations exist. It is then applied to different areas on Mars including Syrtis Major, Aram Chaos and Olympia Undae near the North Polar Cap. MELSUM on Syrtis Major reveals a region dominated by mafic minerals, with the oldest crustal regions composed of a mixing between low-calcium pyroxenes (LCPs) (orthopyroxenes (OPx)) and high-calcium pyroxenes (HCPs) (clinopyroxenes (CPx)). The Syrtis volcanic edifice appears depleted in LCP (OPx) and enriched in HCP (CPx), which is consistent with materials produced with a lower partial fusion degree at an age younger to the surrounding crust. Strong olivine signatures are found between the two calderas Nili Patera and Meroe Patera and in Nili Fossae. A strong signature of iron oxides is found within Aram Chaos, with a spatial distribution also consistent with thermal emission spectrometer (TES). Gypsum is unambiguously detected in the northern polar region, in agreement with the study of Langevin et al. [2005. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307(5715), 1584–1586]. Our results show that the linear spectral unmixing provides good first order results in a variety of mineralogical contexts, and can therefore confidently be used on a wider scale to analyze the complete archive of OMEGA data.  相似文献   

10.
The extensive impact cratering record on Mars combined with evidence from SNC meteorites suggests that a significant fraction of the surface is composed of materials subjected to variable shock pressures. Pressure-induced structural changes in minerals during high-pressure shock events alter their thermal infrared spectral emission features, particularly for feldspars, in a predictable fashion. To understand the degree to which the distribution and magnitude of shock effects influence martian surface mineralogy, we used standard spectral mineral libraries supplemented by laboratory spectra of experimentally shocked bytownite feldspar [Johnson, J.R., Hörz, F., Christensen, P., Lucey, P.G., 2002b. J. Geophys. Res. 107 (E10), doi:10.1029/2001JE001517] to deconvolve Thermal Emission Spectrometer (TES) data from six relatively large (>50 km) impact craters on Mars. We used both TES orbital data and TES mosaics (emission phase function sequences) to study local and regional areas near the craters, and compared the differences between models using single TES detector data and 3×2 detector-averaged data. Inclusion of shocked feldspar spectra in the deconvolution models consistently improved the rms errors compared to models in which the spectra were not used, and resulted in modeled shocked feldspar abundances of >15% in some regions. However, the magnitudes of model rms error improvements were within the noise equivalent rms errors for the TES instrument [Hamilton V., personal communication]. This suggests that while shocked feldspars may be a component of the regions studied, their presence cannot be conclusively demonstrated in the TES data analyzed here. If the distributions of shocked feldspars suggested by the models are real, the lack of spatial correlation to crater materials may reflect extensive aeolian mixing of martian regolith materials composed of variably shocked impact ejecta from both local and distant sources.  相似文献   

11.
Global acquisition of infrared spectra and high-resolution visible and infrared imagery has enabled the placement of compositional information within stratigraphic and geologic context. Mare Serpentis, a low albedo region located northwest of Hellas Basin, is rich in spectral and thermophysical diversity and host to numerous isolated exposures of in situ rocky material. Most martian surfaces are dominated by fine-grained particulate materials that bear an uncertain compositional and spatial relationship to their source. Thus location and characterization of in situ rock exposures is important for understanding the origin of highland materials and the processes which have modified those materials. Using spectral, thermophysical and morphologic information, we assess the local and regional stratigraphy of the Mare Serpentis surface in an effort to reconstruct the geologic history of the region. The martian highlands in Mare Serpentis are dominated by two interspersed surface units, which have distinct compositional and thermophysical properties: (1) rock-dominated surfaces relatively enriched in olivine and pyroxene, and depleted in high-silica phases, and (2) sediment or indurated material depleted in olivine and pyroxene, with relatively higher abundance of high-silica phases. This is a major, previously unrecognized trend which appears to be pervasive in the Mare Serpentis region and possibly in other highland areas. The detailed observations have led us to form two hypotheses for the relationship between these two units: either (1) they are related through a widespread mechanical and/or chemical alteration process, where less-mafic plains materials are derived from the mafic bedrock, but have been compositionally altered in the process of regolith formation, or (2) they are stratigraphically distinct units representing separate episodes of upper crust formation. Existing observations suggest that the second scenario is more likely. In this scenario, plains materials represent older, degraded, and possibly altered, “basement” rock, whereas the rocky exposures represent later additions to the crust and are probably volcanic in origin. These hypotheses should be further testable with decimeter-resolution imagery and meter-resolution short wavelength infrared spectra.  相似文献   

12.
Abstract— The 40 km diameter Mjølnir Crater is located on the central Barents Sea shelf, north of Norway. It was formed about 142 ± 2.6 Myr ago by the impact of a 1–2 km asteroid into the shallow shelf clays of the Hekkingen Formation and the underlying Triassic to Jurassic sedimentary strata. A core recovered from the central high within the crater contains slump and avalanche deposits from the collapse of the transient crater and central high. These beds are overlain by gravity flow conglomerates, with laminated shales and marls on top. Here, impact and post‐impact deposits in this core are studied with focus on clay mineralogy obtained from XRD decomposition and simulation analysis methods. The clay‐sized fractions are dominated by kaolinite, illite, mixed‐layered clay minerals and quartz. Detailed analyses showed rather similar composition throughout the core, but some noticeable differences were detected, including varying crystal size of kaolinite and different types of illites and illite/smectite. These minerals may have been formed by diagenetic changes in the more porous/fractured beds in the crater compared to time‐equivalent beds outside the crater rim. Long‐term post‐impact changes in clay mineralogy are assumed to have been minor, due to the shallow burial depth and minor thermal influence from impact‐heated target rocks. Instead, the clay mineral assemblages, especially the abundance of chlorite, reflect the impact and post‐impact reworking of older material. Previously, an ejecta layer (the Sindre Bed) was recognized in a nearby well outside the crater, represented by an increase in smectite‐rich clay minerals, genetically equivalent to the smectite occurring in proximal ejecta deposits of the Chicxulub crater. Such alteration products from impact glasses were not detected in this study, indicating that little, if any, impact glass was deposited within the upper part of the crater fill. Crater‐fill deposits inherited their mineral composition from Triassic and Jurassic sediments underlying the impact site.  相似文献   

13.
Abstract— Highly silicic glass inclusions are commonly present in mafic minerals of xenolithic terrestrial upper mantle rocks (Schiano and Clocchiatti, 1994). They are believed to be the products of volatile-rich silicic melts for which several sources have been proposed (Francis, 1976; Frey and Green, 1974; Schiano et al, 1995), but their origin(s) and, consequently, that of the glasses, remains unknown. However, in situ formation by very low-degree partial melting seems to be possible as has been shown by experiments (e.g., Baker et al, 1995; Draper and Green, 1997). Glass inclusions of silicic chemical composition are also present in some mafic minerals of achondritic meteorites (e.g., Fuchs, 1974; Okada et al, 1988; Johnson et al, 1991). The enstatite achondrites (aubrites) Aubres and Norton County, which record early planetesimal and planet formation in the solar nebula, and the olivine achondrite (chassignite) Chassigny, a rock believed to originate from Mars, contain abundant glass inclusions in their main minerals enstatite and olivine, respectively. Glasses of glass-bearing inclusions have a highly silicic and volatile-rich chemical composition similar, but not identical, to that of glass inclusions in terrestrial upper mantle peridotite minerals. Furthermore, glass inclusions in olivines from the Moon (e.g., Roedder and Weiblen, 1977) are also silica-rich. Because different physicochemical conditions prevail in the source regions of these rocks, the process of melting is, perhaps, not generally applicable for the generation of silica-rich glasses. Alternatively, the glasses could have been formed via precipitation from silicate-loaded fluids (Schneider and Eggler, 1986) or vapors. Another possible mechanism, not previously identified, could be dehydrogenation of nominally nonhydrous mafic minerals by heating or depressurization that should be accompanied by expulsion of excess silica and incompatible elements. This process will mimic low-temperature, very low-degree partial melting. It could account also for the highly variable glass/bubble ratios observed in glass inclusions in aubrite enstatites. We suggest that such a process could have been operating in the solar nebula, the Moon and Mars, and could be operating still on Earth.  相似文献   

14.
Hyperspectral imaging can be used to rapidly identify and map the spatial distributions of many minerals. Here, hyperspectral mapping in three wavelength regions (visible and near‐infrared, shortwave infrared, and thermal infrared) was applied to drill cores (ST001, ST002, and ST003) penetrating a continuous sequence of crater‐fill breccias from the Steen River impact structure in Alberta, Canada. The combined data sets reveal distinct mineralogical layering, with breccias derived predominantly from sedimentary rocks overlying those derived from granitic basement. This stratigraphy demonstrates that the breccias were not appreciably disturbed following deposition, which is inconsistent with formation models of similar breccias (suevites) by explosive impact melt–fluid interaction. At Steen River, volatiles from sedimentary target rocks were an inherent part of forming these enigmatic breccias. Approximately three quarters of terrestrial impact structures contain sedimentary target rocks; therefore, the role of volatiles in producing so‐called suevitic breccias may be more widespread than previously realized. The hyperspectral maps, specifically within the SWIR wavelength region, also delineate minerals associated with postimpact hydrothermal activity, including ammoniated clay and feldspar minerals not detectable using traditional techniques. These nitrogen‐bearing minerals may have originated from microbial processes, associated with oil‐ and gas‐producing units in the crater vicinity. Such minerals may have important implications for the production of habitable environments by impact‐induced hydrothermal activity on Earth and Mars.  相似文献   

15.
Multiple datasets have demonstrated that the crust of Mars is fundamentally basaltic. However, spectral libraries used to interrogate thermal infrared spectra of Martian dark regions through spectral deconvolution have heretofore lacked mafic glasses despite the importance of amorphous phases (or phases with amorphous-like spectral signatures) in Martian mineralogy. To establish the presence and importance of basaltic-to-intermediate glasses in Martian lithologies, we created five such glasses, obtained their thermal infrared spectra and included the spectra in a library used to deconvolve nine regional Thermal Emission Spectrometer spectra from Mars. We employed the nonnegative least squares (NNLS) deconvolution method, which yields deconvolved phase abundances and the uncertainties associated with those abundances. The basaltic-to-intermediate glasses do not appear in the deconvolution solutions, indicating they are not globally or regionally important phases. Because Martian igneous or impact processes are capable of basaltic-to-intermediate glass formation, the lack of such glasses in the deconvolved mineralogies suggests either the glasses did not form in detectable quantities or they (or their signatures) have been removed. The masking or replacement of basaltic-to-intermediate glasses through alteration is supported by the appearance in the deconvolution solutions of amorphous phases (e.g., silica-rich glasses, opal) or phases with amorphous-like spectral signatures (e.g., clays, zeolites) that commonly form through aqueous alteration of mafic glasses. The glasses may still be important to local-scale thermal infrared studies given the basaltic nature of Mars and the variety of local-scale lithologies detected by various missions. The regional mineralogies derived from the NNLS deconvolution analysis divide into five statistically separable groups, which provide insight into regional trends in mineralogy.  相似文献   

16.
Analyses of Mars Express OMEGA hyperspectral data (0.4-2.7 μm) for Terra Meridiani and western Arabia Terra show that the northern mantled cratered terrains are covered by dust that is spectrally dominated by nanophase ferric oxides. Dark aeolian dunes inside craters and dark streaks extending from the dunes into the intercrater areas in mantled cratered terrains in western Arabia Terra have similar pyroxene-rich signatures demonstrating that the dunes supply dark basaltic material to create dark streaks. The dissected cratered terrains to the south of the mantled terrains are dominated spectrally by both low-calcium and high-calcium pyroxenes with abundances of 20-30% each retrieved from nonlinear radiative transfer modeling. Spectra over the hematite-bearing plains in Meridiani Planum are characterized by very weak but unique spectral features attributed to a mixture of a dark and featureless component (possibly gray hematite) and minor olivine in some locations. Hydrated minerals (likely hydrous ferric sulfates and/or hydrous hydroxides) associated with poorly ferric crystalline phases are found in the etched terrains to the north and east of the hematite-bearing plains where erosion has exposed ∼1 km of section of layered outcrops with high thermal inertias. These materials are also found in numerous craters in the northern Terra Meridiani and may represent outliers of the etched terrain materials. A few localized spots within the etched terrain also exhibit the spectral signature of Fe-rich phyllosilicates. The ensemble of observations show that the evidence for aqueous processes detected by the Opportunity Rover in Meridiani Planum is widespread and confirms the extended presence of surface or near-surface water over this large region of Mars. The scenarios of formation of Terra Meridiani (“dirty” acidic evaporite, impact surge or weathering of volcanic ash) cannot satisfactorily explain the mineralogy derived from the OMEGA observations. The formation of the etched terrains is consistent with leaching of iron sulfides and formation of sulfates and hydrated iron oxides, either in-place or via transport and evaporation of aqueous fluids and under aqueous conditions less acidic than inferred from rocks examined by Opportunity.  相似文献   

17.
The search for biosignatures in the soil of Mars is a major objective of the planet exploration, but the detection of such structures is not straightforward due to the degradation of the organic material. In a previous work our group has analyzed the spectral reaction to thermal processing of biomineral carbonate samples including fresh and fossil shells. We found that two terrestrial fossil shells collected from clay deposits preserve their biomineral characteristics much better than coeval fossils not embedded in clay layers.In the present paper we extend our analysis to a set of fossils found in three different terrestrial clay deposits. Our results confirm that the level of degradation may be much lower than the standard values if fossils are surrounded by clay minerals. As a result these fossils have a spectroscopic response to thermal treatment which make them much more distinguishable from their abiotic counterparts than coeval fossils not collected from clay deposits. This result implies that the phyllosilicates regions recently discovered on Mars may represent very interesting environments that can provide conditions favorable to preserve evidence of biomarkers, and hence can be regarded as good candidate locations for their detection.  相似文献   

18.
Shock metamorphism of the lunar samples is discussed. All types of lunar glasses formed by various-size collision-type impact are found as impact glass, ropy glass and agglutinates. The agglutinates bonded by crystal and glassy materials contain hydrogen and helium from the solar wind components. Lunar shocked minerals of plagioclase and silica show anomalous compositions and densities. There are typical two formation processes on planetary materials formed by shock events; that is (1) shocked quartz formed by silica-rich target rocks (esp. on evolved planets of the Earth and Mars), and (2) shocked silica with minor Al contents formed from plagioclase-rich primordial crusts of the Moon. The both shocked silica grows to coarse-grain normal crystals after high-temperature metamorphism which cannot distinguish the original main formation event of impact process.  相似文献   

19.
Abstract— The Lafayette meteorite, a nakhlite of the SNC (Martian?) group, contains hydrous alteration materials as intergranular films and as veinlets and patches replacing olivine, pyroxenes, and high-Si glass. The alteration materials (“iddingsite”) consist of ferroan smectite clays, magnetite (or maghemite), and ferrihydrite, as shown by SEM and TEM. Three varieties of veinlets are present and formed in the order: coarse phyllosilicate; fine-grained (phyllosilicate-oxide), and porous oxide. Veinlets of fine-grained material cross-cut coarse phyllosilicate veinlets. The alteration materials are preterrestrial, as they are older than Lafayette's fusion crust, which is glassy and not affected by any alterations. Approaching the crust, the veinlets are progressively modified to the point of melting, and progressively depleted in adsorbed volatile constituents (S, Cl, and P). Bulk compositions of the alteration veinlets (SEM and TEM EDX) are consistent with the observed mineralogy, and suggest: that the smectite contains significant adsorbed S and Cl; that the ferrihydrite contains significant adsorbed S, but not Cl; that rare grains of sulfate (Ca?) and chloride (Na or K?) are present; and that the compositions of the alteration materials are approximated by Lafayette's olivine + high-Si glass + water. We estimate that Lafayette's alteration materials formed at less than 100 °C. The oxidation potential of the water was near or slightly below that of the magnetite-hematite buffer. The presence of sulfate and chloride in discrete phases and as adsorbates on ferrihydrite and smectite suggests that the altering solutions were saline. However, relatively little mass was transferred into or out of Lafayette because the bulk composition of the alteration materials is nearly isochemical with a mixture of magmatic silicate phases and water. Chemical transport within Lafayette was also limited, as alteration materials preserve some chemical signature of their host minerals. Presence of alteration materials along only some grain boundaries and some cracks suggests that Lafayette was not soaked in fluid. These last two inferences suggest that the alteration of Lafayette took place during episodic infiltrations of small volumes of saline water.  相似文献   

20.
The surface of Mars is covered by weathered material. Mars' rusty red colour in particular is commonly ascribed to ferric iron-bearing minerals. The planet's surface is generally iron rich. Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing minerals. Consequently, the miniaturized Mössbauer spectrometer MIMOS II is part of the payload of NASA's twin Mars Exploration Rovers “Spirit” and “Opportunity”, and ESA's ill-fated Mars Express lander “Beagle 2”. Both Mars Exploration Rovers are currently conducting successful surface operations on Mars. In this paper, we give a brief insight into mission operations with respect to the reconstruction of local weathering scenarios at the landing sites, which in turn will help to illuminate the climatic history of the planet. Mössbauer spectra obtained in preparation of the mission from the SNC meteorites Nakhla, Dar al Gani 476, and Sayh al Uhaymir, show weathering and other alteration features. Preliminary results of laboratory weathering experiments on Fe-bearing minerals (olivine and pyroxene) show the importance of analysing individual minerals to understand weathering of more complex mineral assemblages like, e.g., basalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号