首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The area of stable motion for fictitious Trojan asteroids around Uranus’ equilateral equilibrium points is investigated with respect to the inclination of the asteroid’s orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L 4 and L 5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System (Jupiter, Saturn, Uranus and Neptune). We integrated the equations of motion of fictitious Trojans in the vicinity of the stable equilibrium points for selected orbits up to the age of the Solar system of 5 × 109 years. One experiment has been undertaken for cuts through the Lagrange points for fixed values of the inclinations, while the semimajor axes were varied. The extension of the stable region with respect to the initial semimajor axis lies between 19.05 ≤ a ≤ 19.3 AU but depends on the initial inclination. In another run the inclination of the asteroids’ orbit was varied in the range 0° < i < 60° and the semimajor axes were fixed. It turned out that only four ‘windows’ of stable orbits survive: these are the orbits for the initial inclinations 0° < i < 7°, 9° < i < 13°, 31° < i < 36° and 38° < i < 50°. We postulate the existence of at least some Trojans around the Uranus Lagrange points for the stability window at small and also high inclinations.  相似文献   

2.
We investigated the stable area for fictive Trojan asteroids around Neptune’s Lagrangean equilibrium points with respect to their semimajor axis and inclination. To get a first impression of the stability region we derived a symplectic mapping for the circular and the elliptic planar restricted three body problem. The dynamical model for the numerical integrations was the outer Solar system with the Sun and the planets Jupiter, Saturn, Uranus and Neptune. To understand the dynamics of the region around L 4 and L 5 for the Neptune Trojans we also used eight different dynamical models (from the elliptic problem to the full outer Solar system model with all giant planets) and compared the results with respect to the largeness and shape of the stable region. Their dependence on the initial inclinations (0° < i < 70°) of the Trojans’ orbits could be established for all the eight models and showed the primary influence of Uranus. In addition we could show that an asymmetry of the regions around L 4 and L 5 is just an artifact of the different initial conditions.  相似文献   

3.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

4.
The orbits of fictitious bodies around Jupiter’s stable equilibrium points L 4 and L 5 were integrated for a fine grid of initial conditions up to 100 million years. We checked the validity of three different dynamical models, namely the spatial, restricted three body problem, a model with Sun, Jupiter and Saturn and also the dynamical model with the Outer Solar System (Jupiter to Neptune). We determined the chaoticity of an orbit with the aid of the Lyapunov Characteristic Exponents (=LCE) and used also a method where the maximum eccentricity of an orbit achieved during the dynamical evolution was examined. The goal of this investigation was to determine the size of the regions of motion around the equilibrium points of Jupiter and to find out the dependance on the inclination of the Trojan’s orbit. Whereas for small inclinations (up to i=20°) the stable regions are almost equally large, for moderate inclinations the size shrinks quite rapidly and disappears completely for i>60°. Additionally, we found a difference in the dynamics of orbits around L 4 which – according to the LCE – seem to be more stable than the ones around L 5.  相似文献   

5.
We explore the long-term stability of Earth Trojans by using a chaos indicator, the Frequency Map Analysis. We find that there is an extended stability region at low eccentricity and for inclinations lower than about $50^{\circ }$ even if the most stable orbits are found at $i \le 40^{\circ }$ . This region is not limited in libration amplitude, contrary to what found for Trojan orbits around outer planets. We also investigate how the stability properties are affected by the tidal force of the Earth–Moon system and by the Yarkovsky force. The tidal field of the Earth–Moon system reduces the stability of the Earth Trojans at high inclinations while the Yarkovsky force, at least for bodies larger than 10 m in diameter, does not seem to strongly influence the long-term stability. Earth Trojan orbits with the lowest diffusion rate survive on timescales of the order of $10^9$  years but their evolution is chaotic. Their behaviour is similar to that of Mars Trojans even if Earth Trojans appear to have shorter lifetimes.  相似文献   

6.
We have observed well-sampled phase curves for nine Trojan asteroids in B-, V-, and I-bands. These were constructed from 778 magnitudes taken with the 1.3-m telescope on Cerro Tololo as operated by a service observer for the SMARTS consortium. Over our typical phase range of 0.2-10°, we find our phase curves to be adequately described by a linear model, for slopes of 0.04-0.09 mag/° with average uncertainty less than 0.02 mag/°. (The one exception, 51378 (2001 AT33), has a formally negative slope of −0.02 ± 0.01 mag/°.) These slopes are too steep for the opposition surge mechanism to be shadow-hiding (SH), so we conclude that the dominant surge mechanism must be coherent backscattering (CB). In a detailed comparison of surface properties (including surge slope, B-R color, and albedo), we find that the Trojans have surface properties similar to the P and C class asteroids prominent in the outer main belt, yet they have significantly different surge properties (at a confidence level of 99.90%). This provides an imperfect argument against the traditional idea that the Trojans were formed around Jupiter’s orbit. We also find no overlap in Trojan properties with either the main belt asteroids or with the small icy bodies in the outer Solar System. Importantly, we find that the Trojans are indistinguishable from other small bodies in the outer Solar System that have lost their surface ices (such as the gray Centaurs, gray Scattered Disk Objects, and dead comets). Thus, we find strong support for the idea that the Trojans originally formed as icy bodies in the outer Solar System, were captured into their current orbits during the migration of the gas giant planets, and subsequently lost all their surface ices.  相似文献   

7.
F. MarzariH. Scholl 《Icarus》2002,159(2):328-338
We have numerically explored the mechanisms that destabilize Jupiter's Trojan orbits outside the stability region defined by Levison et al. (1997, Nature385, 42-44). Different models have been exploited to test various possible sources of instability on timescales on the order of ∼108 years.In the restricted three-body model, only a few Trojan orbits become unstable within 108 years. This intrinsic instability contributes only marginally to the overall instability found by Levison et al.In a model where the orbital parameters of both Jupiter and Saturn are fixed, we have investigated the role of Saturn and its gravitational influence. We find that a large fraction of Trojan orbits become unstable because of the direct nonresonant perturbations by Saturn. By shifting its semimajor axis at constant intervals around its present value we find that the near 5:2 mean motion resonance between the two giant planets (the Great Inequality) is not responsible for the gross instability of Jupiter's Trojans since short-term perturbations by Saturn destabilize Trojans, even when the two planets are far out of the resonance.Secular resonances are an additional source of instability. In the full six-body model with the four major planets included in the numerical integration, we have analyzed the effects of secular resonances with the node of the planets. Trojan asteroids have relevant inclinations, and nodal secular resonances play an important role. When a Trojan orbit becomes unstable, in most cases the libration amplitude of the critical argument of the 1:1 mean motion resonance grows until the asteroid encounters the planet. Libration amplitude, eccentricity, and nodal rate are linked for Trojan orbits by an algebraic relation so that when one of the three parameters is perturbed, the other two are affected as well. There are numerous secular resonances with the nodal rate of Jupiter that fall inside the region of instability and contribute to destabilize Trojans, in particular the ν16. Indeed, in the full model the escape rate over 50 Myr is higher compared to the fixed model.Some secular resonances even cross the stability region delimited by Levison et al. and cause instability. This is the case of the 3:2 and 1:2 nodal resonances with Jupiter. In particular the 1:2 is responsible for the instability of some clones of the L4 Trojan (3540) Protesilaos.  相似文献   

8.
The three-dimensional secular behavior of a system composed of a central star and two massive planets is modeled semi-analytically in the frame of the general three-body problem. The main dynamical features of the system are presented in geometrical pictures allowing us to investigate a large domain of the phase space of this problem without time-expensive numerical integrations of the equations of motion and without any restriction on the magnitude of the planetary eccentricities, inclinations and mutual distance. Several regimes of motion of the system are observed. With respect to the secular angle Δ?, possible motions are circulations, oscillations (around 0° and 180°), and high-eccentricity/inclination librations in secular resonances. With respect to the arguments of pericenter, ω1 and ω2, possible motions are direct circulation and high-inclination libration around ±90° in the Lidov-Kozai resonance. The regions of transition between domains of different regimes of motion are characterized by chaotic behavior. We apply the analysis to the case of the two outer planets of the υ Andromedae system, observed edge-on. The topology of the 3-D phase space of this system is investigated in detail by means of surfaces of section, periodic orbits and dynamical spectra, mapping techniques and numerical simulations. We obtain the general structure of the phase space, and the boundaries of the spatial secular stability. We find that this system is secularly stable in a large domain of eccentricities and inclinations.  相似文献   

9.
Composition of the L5 Mars Trojans: Neighbors, not siblings   总被引:1,自引:1,他引:0  
Mars is the only terrestrial planet known to have Trojan (co-orbiting) asteroids, with a confirmed population of at least 4 objects. The origin of these objects is not known; while several have orbits that are stable on Solar System timescales, work by Rivkin et al. [Rivkin, A.S., Binzel, R.P., Howell, E.S., Bus, S.J., Grier, J.A., 2003. Icarus 165, 349–354] showed they have compositions that suggest separate origins from one another. We have obtained infrared (0.8–2.5 μm) spectroscopy of the two largest L5 Mars Trojans, and confirm and extend the results of Rivkin et al. We suggest that the differentiated angrite meteorites are good spectral analogs for 5261 Eureka, the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied and include primitive achondrites and mesosiderites.  相似文献   

10.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

11.
All the Trojan asteroids orbit about the Sun at roughly the same heliocentric distance as Jupiter. Differences in the observed visible reflection spectra range from neutral to red, with no ultra-red objects found so far. Given that the Trojan asteroids are collisionally evolved, a certain degree of variability is expected. Additionally, cosmic radiation and sublimation are important factors in modifying icy surfaces even at those large heliocentric distances. We search for correlations between physical and dynamical properties, we explore relationships between the following four quantities; the normalised visible reflectivity indexes (S), the absolute magnitudes, the observed albedos and the orbital stability of the Trojans. We present here visible spectroscopic spectra of 25 Trojans. This new data increase by a factor of about 5 the size of the sample of visible spectra of Jupiter Trojans on unstable orbits. The observations were carried out at the ESO-NTT telescope (3.5 m) at La Silla, Chile, the ING-WHT (4.2 m) and NOT (2.5 m) at Roque de los Muchachos observatory, La Palma, Spain. We have found a correlation between the size distribution and the orbital stability. The absolute-magnitude distribution of the Trojans in stable orbits is found to be bimodal, while the one of the unstable orbits is unimodal, with a slope similar to that of the small stable Trojans. This supports the hypothesis that the unstable objects are mainly byproducts of physical collisions. The values of S of both the stable and the unstable Trojans are uniformly distributed over a wide range, from 0%/1000 Å to about 15%/1000 Å. The values for the stable Trojans tend to be slightly redder than the unstable ones, but no significant statistical difference is found.  相似文献   

12.
The stability of Trojan type orbits around Neptune is studied. As the first part of our investigation, we present in this paper a global view of the stability of Trojans on inclined orbits. Using the frequency analysis method based on the fast Fourier transform technique, we construct high-resolution dynamical maps on the plane of initial semimajor axis a 0 versus inclination i 0. These maps show three most stable regions, with i 0 in the range of  (0°, 12°), (22°, 36°)  and  (51°, 59°),  respectively, where the Trojans are most probably expected to be found. The similarity between the maps for the leading and trailing triangular Lagrange points L 4 and L 5 confirms the dynamical symmetry between these two points. By computing the power spectrum and the proper frequencies of the Trojan motion, we figure out the mechanisms that trigger chaos in the motion. The Kozai resonance found at high inclination varies the eccentricity and inclination of orbits, while the  ν8  secular resonance around   i 0∼ 44°  pumps up the eccentricity. Both mechanisms lead to eccentric orbits and encounters with Uranus that introduce strong perturbation and drive the objects away from the Trojan like orbits. This explains the clearance of Trojan at high inclination  (>60°)  and an unstable gap around  44°  on the dynamical map. An empirical theory is derived from the numerical results, with which the main secular resonances are located on the initial plane of  ( a 0, i 0)  . The fine structures in the dynamical maps can be explained by these secular resonances.  相似文献   

13.
The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a hypothetical extrasolar planetary system our Solar System was modified in such a way that we replaced the Earth by a more massive planet and let the other planets and all the orbital elements unchanged. The major result of former numerical experiments with a modified Solar System was the appearance of a chaotic window at κ E ∈ (4, 6), where the dynamical state of the system was highly chaotic and even the body with the smallest mass escaped in some cases. On the contrary for very large values of the mass of the Earth, even greater than that of Jupiter regular dynamical behaviour was observed. In this paper the investigations are extended to the complete Solar System and showed, that this chaotic window does still exist. Tests in different ‘Solar Systems’ clarified that including only Jupiter and Saturn with their actual masses together with a more ‘massive’ Earth (4 < κ E < 6) perturbs the orbit of Mars so that it can even be ejected from the system. Using the results of the Laplace‐Lagrange secular theory we found secular resonances acting between the motions of the nodes of Mars, Jupiter and Saturn. These secular resonances give rise to strong chaos, which is the cause of the appearance of the instability window. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
On the origin of the unusual orbit of Comet 2P/Encke   总被引:1,自引:0,他引:1  
The orbit of Comet 2P/Encke is difficult to understand because it is decoupled from Jupiter—its aphelion distance is only 4.1 AU. We present a series of orbital integrations designed to determine whether the orbit of Comet 2P/Encke can simply be the result of gravitational interactions between Jupiter-family comets and the terrestrial planets. To accomplish this, we integrated the orbits of a large number of objects from the trans-neptunian region, through the realm of the giant planets, and into the inner Solar System. We find that at any one time, our model predicts that there should be roughly 12 objects in Encke-like orbits. However, it takes roughly 200 times longer to evolve onto an orbit like this than the typical cometary physical lifetime. Thus, we suggest that (i) 2P/Encke became dormant soon after it was kicked inward by Jupiter, (ii) it spent a significant amount of time inactive while rattling around the inner Solar System, and (iii) it only became active again as the ν6 secular resonance drove down its perihelion distance.  相似文献   

15.
T.A. Michtchenko  R. Malhotra 《Icarus》2004,168(2):237-248
The discovery of extra-solar planetary systems with multiple planets in highly eccentric orbits (∼0.1-0.6), in contrast with our own Solar System, makes classical secular perturbation analysis very limited. In this paper, we use a semi-numerical approach to study the secular behavior of a system composed of a central star and two massive planets in co-planar orbits. We show that the secular dynamics of this system can be described using only two parameters, the ratios of the semi-major axes and the planetary masses. The main dynamical features of the system are presented in geometrical pictures that allows us to investigate a large domain of the phase space of this three-body problem without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The topology of the phase space is also investigated in detail by means of spectral map techniques, which allow us to detect the separatrix of a non-linear secular apsidal resonance. Finally, the qualitative study is supplemented by direct numerical integrations. Three different regimes of secular motion with respect to the secular angle Δ? are possible: they are circulation, oscillation (around 0° and 180°), and high eccentricity libration in a non-linear secular resonance. The first two regimes are a continuous extension of the classical linear secular perturbation theory; the last is a new feature, hitherto unknown, in the secular dynamics of the three-body problem. We apply the analysis to the case of the two outer planets in the υ Andromedae system, and obtain its periodic and ordinary orbits, the general structure of its secular phase space, and the boundaries of its secular stability; we find that this system is secularly stable over a large domain of eccentricities. Applying this analysis to a wide range of planetary mass and semi-major axis ratios (centered about the υ Andromedae parameters), we find that apsidal oscillation dominates the secular phase space of the three-body coplanar system, and that the non-linear secular resonance is also a common feature.  相似文献   

16.
Irregular satellites—moons that occupy large orbits of significant eccentricity e and/or inclination I—circle each of the giant planets. The irregulars often extend close to the orbital stability limit, about 1/3-1/2 of the way to the edge of their planet's Hill sphere. The distant, elongated, and inclined orbits suggest capture, which presumably would give a random distribution of inclinations. Yet, no known irregulars have inclinations (relative to the ecliptic) between 47 and 141°.This paper shows that many high-I orbits are unstable due to secular solar perturbations. High-inclination orbits suffer appreciable periodic changes in eccentricity; large eccentricities can either drive particles with ∼70°<I<110° deep into the realm of the regular satellites (where collisions and scatterings are likely to remove them from planetocentric orbits on a timescale of 107-109 years) or expel them from the Hill sphere of the planet.By carrying out long-term (109 years) orbital integrations for a variety of hypothetical satellites, we demonstrate that solar and planetary perturbations, by causing particles to strike (or to escape) their planet, considerably broaden this zone of avoidance. It grows to at least 55°<I<130° for orbits whose pericenters freely oscillate from 0 to 360°, while particles whose pericenters are locked at ±90° (Kozai mechanism) can remain for longer times.We estimate that the stable phase space (over 10 Myr) for satellites trapped in the Kozai resonance contains ∼10% of all stable orbits, suggesting the possible existence of a family of undiscovered objects at higher inclinations than those currently known.  相似文献   

17.
In the last three years we have carried out numerical and semi-analytical studies on the secular dynamical mechanisms in the region (semimajor axis a < 2 AU) where the NEA orbits evolve. Our numerical integrations (over a time span of a few Myr) have shown that: (i) the linear secular resonances with both the inner and the outer planets may play an important role in the dynamical evolution of NEAs; (ii) the apsidal secular resonance with Mars could provide an important dynamical transport mechanism by which asteroids in the Mars-crossing region eventually achieve Earth-crossing orbits; (iii) in this region, due to the interaction with the terrestrial planets, the Kozai resonance can occur at small inclinations, with the argument of perihelion ω librating around 0° or 180°, providing a temporary protection mechanism against close approaches to the planets. The location of the linear secular resonances in this zone has also been obtained by an automatic procedure using a semi-numerical method valid for all values of the inclinations and eccentricities of the small bodies, and also in the case of libration of the argument of perihelion. A map of the secular resonances in the (a, i) plane shows — in agreement with the numerical integrations — that all the resonances with the terrestrial and giant planets are present, and also that some of them overlap. Thus the way is now open to fully take into account secular resonances in modelling the dynamical evolution of NEAs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We investigate the survivability of Trojan-type companions of Neptune during primordial radial migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. We adopt the usual planet migration model in which the migration speed decreases exponentially with a characteristic time scale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus ∼1000 test particle Neptune Trojans with initial distributions of orbital eccentricity, inclination, and libration amplitude similar to those of the known jovian Trojans asteroids. We analyze these simulations to measure the survivability of Neptune's Trojans as a function of migration rate. We find that orbital migration with the characteristic time scale τ=106 years allows about 35% of preexisting Neptune Trojans to survive to 5τ, by which time the giant planets have essentially reached their final orbits. In contrast, slower migration with τ=107 years yields only a ∼5% probability of Neptune Trojans surviving to a time of 5τ. Interestingly, we find that the loss of Neptune Trojans during planetary migration is not a random diffusion process. Rather, losses occur almost exclusively during discrete prolonged episodes when Trojan particles are swept by secondary resonances associated with mean-motion commensurabilities of Uranus with Neptune. These secondary resonances arise when the circulation frequencies, f, of critical arguments for Uranus-Neptune mean-motion near-resonances (e.g., fUN1:2, fUN4:7) are commensurate with harmonics of the libration frequency of the critical argument for the Neptune-Trojan 1:1 mean-motion resonance (fNT1:1). Trojans trapped in the secondary resonances typically have their libration amplitudes amplified until they escape the 1:1 resonance with Neptune. Trojans with large libration amplitudes are susceptible to loss during sweeping by numerous high-order secondary resonances (e.g., fUN1:2≈11fNT1:1). However, for the slower migration, with τ=107 years, even tightly bound Neptune Trojans with libration amplitudes below 10° can be lost when they become trapped in 1:3 or 1:2 secondary resonances between fUN1:2 and fNT1:1. With τ=107 years the 1:2 secondary resonance was responsible for the single greatest episode of loss, ejecting nearly 75% of existing Neptune Trojans. This episode occurred during the late stages of planetary migration when the remnant planetesimal disk would have been largely dissipated. We speculate that if the number of bodies liberated during this event was sufficiently high they could have caused a spike in the impact rate throughout the Solar System.  相似文献   

19.
The orbits of real asteroids around the Lagrangian points L4 and L 5of Jupiter with large inclinations (i > 20°) were integrated for 50 Myrs. We investigated the stability with the aid of the Lyapunov characteristic exponents (LCE) but tested also two other methods: on one hand we integrated four neighbouring orbits for each asteroid and computed the maximum distance in every group, on the other hand we checked the variation of the Delaunay element H of the asteroid. In a second simulation – for a grid of initial eccentricity versus initial inclination – we examined the stability of the orbits around both Lagrangian points for 20° < i < 55° and 0.0 < e < 0.20. For the initial semimajor axes we have chosen the one ofJupiter(a = 5.202 AU). We determined the stability with the aid of the LCEs and also the maximum eccentricity of the orbits during the whole integration time. The region around L4 turned out to be unstable for large inclinations and eccentricities (i > 55° and e > 0.12). The stable region shrinks for orbits around L5: we found that they become unstable already for i > 45° and e > 0.10. We interpret it as a first hint why we observe more Trojans around the leading Lagrangian point. The results confirm the stability behaviour of the real Trojans which we computed in the first part of the paper.  相似文献   

20.
Up to now, 17 Neptune Trojan asteroids have been detected with their orbits being well determined by continuous observations. This paper analyzes systematically their orbital dynamics. Our results show that except for two temporary members with relatively short lifespans on Trojan orbits, the vast majority of Neptune Trojans located within their orbital uncertainties may survive in the solar system age. The escaping probability of Neptune Trojans, through slow diffusion in the orbital element space in 4.5 billion years, is estimated to be ~50%. The asteroid 2012 UW177 classified as a Centaur asteroid by the IAU Minor Planet Center currently is in fact a Neptune Trojan. Numerical simulations indicate that it is librating on the tadpole-shaped orbit around the Neptune's L4 point. It was captured into the current orbit approximately 0.23 million years ago, and will stay there for at least another 1.3 million years in the future. Its high inclination of i ≈ 54° not only makes it the most inclined Neptune Trojan, but also makes it exhibit the complicated and interesting co-orbital transitions between the leading and trailing Trojans via the quasi-satellite orbit phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号