首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

3.
We have investigated the final accretion stage of terrestrial planets from Mars-mass protoplanets that formed through oligarchic growth in a disk comparable to the minimum mass solar nebula (MMSN), through N-body simulation including random torques exerted by disk turbulence due to Magneto-Rotational Instability. For the torques, we used the semi-analytical formula developed by Laughlin et al. [Laughlin, G., Steinacker, A., Adams, F.C., 2004. Astrophys. J. 608, 489-496]. The damping of orbital eccentricities (in all runs) and type-I migration (in some runs) due to the tidal interactions with disk gas is also included. Without any effect of disk gas, Earth-mass planets are formed in terrestrial planet regions in a disk comparable to MMSN but with too large orbital eccentricities to be consistent with the present eccentricities of Earth and Venus in our Solar System. With the eccentricity damping caused by the tidal interaction with a remnant gas disk, Earth-mass planets with eccentricities consistent with those of Earth and Venus are formed in a limited range of disk gas surface density (∼10−4 times MMSN). However, in this case, on average, too many (?6) planets remain in terrestrial planet regions, because the damping leads to isolation between the planets. We have carried out a series of N-body simulations including the random torques with different disk surface density and strength of turbulence. We found that the orbital eccentricities pumped up by the turbulent torques and associated random walks in semimajor axes tend to delay isolation of planets, resulting in more coagulation of planets. The eccentricities are still damped after planets become isolated. As a result, the number of final planets decreases with increase in strength of the turbulence, while Earth-mass planets with small eccentricities are still formed. In the case of relatively strong turbulence, the number of final planets are 4-5 at 0.5-2 AU, which is more consistent with Solar System, for relatively wide range of disk gas surface density (∼10−4-10−2 times MMSN).  相似文献   

4.
Evidence has mounted for some time that planet migration is an important part of the formation of planetary systems, both in the Solar System [Malhotra, R., 1993. Nature 365, 819-821] and in extrasolar systems [Mayor, M., Queloz, D., 1995. Nature 378, 355-359; Lin, D.N.C., Bodenheimer, P., Richardson, D.C., 1996. Nature 380, 606-607]. One mechanism that produces migration (the change in a planet's semi-major axis a over time) is the scattering of comet- and asteroid-size bodies called planetesimals [Fernandez, J.A., Ip, W.-H., 1984. Icarus 58, 109-120]. Significant angular momentum exchange can occur between the planets and the planetesimals during local scattering, enough to cause a rapid, self-sustained migration of the planet [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445]. This migration has been studied for the particular case of the four outer planets of the Solar System (as in Gomes et al. [Gomes, R.S., Morbidelli, A., Levison, H.F., 2004. Icarus 170, 492-507]), but is not well understood in general. We have used the Miranda [McNeil, D., Duncan, M., Levison, H.F., 2005. Astron. J. 130, 2884-2899] computer simulation code to perform a broad parameter-space survey of the physical variables that determine the migration of a single planet in a planetesimal disk. Migration is found to be predominantly inwards, and the migration rate is found to be independent of planet mass for low-mass planets in relatively high-mass disks. Indeed, a simple scaling relation from Ida et al. [Ida, S., Bryden, G., Lin, D.N.C., Tanaka, H., 2000. Astrophys. J. 534, 428-445] matches well with the dependencies of the migration rate:
(1)  相似文献   

5.
The increasing number and variety of extrasolar planets illustrates the importance of characterizing planetary perturbations. Planetary orbits are typically described by physically intuitive orbital elements. Here, we explicitly express the equations of motion of the unaveraged perturbed two-body problem in terms of planetary orbital elements by using a generalized form of Gauss’ equations. We consider a varied set of position and velocity-dependent perturbations, and also derive relevant specific cases of the equations: when they are averaged over fast variables (the “adiabatic” approximation), and in the prograde and retrograde planar cases. In each instance, we delineate the properties of the equations. As brief demonstrations of potential applications, we consider the effect of Galactic tides. We measure the effect on the widest-known exoplanet orbit, Sedna-like objects, and distant scattered disk objects, particularly with regard to where the adiabatic approximation breaks down. The Mathematica code which can help derive the equations of motion for a user-defined perturbation is freely available upon request.  相似文献   

6.
This paper investigates the surface density evolution of a planetesimal disk due to the effect of type-I migration by carrying out N-body simulation and through analytical method, focusing on terrestrial planet formation. The coagulation and the growth of the planetesimals take place in the abundant gas disk except for a final stage. A protoplanet excites density waves in the gas disk, which causes the torque on the protoplanet. The torque imbalance makes the protoplanet suffer radial migration, which is known as type-I migration. Type-I migration time scale derived by the linear theory may be too short for the terrestrial planets to survive, which is one of the major problems in the planet formation scenario. Although the linear theory assumes a protoplanet being in a gas disk alone, Kominami et al. [Kominami, J., Tanaka, H., Ida, S., 2005. Icarus 167, 231-243] showed that the effect of the interaction with the planetesimal disk and the neighboring protoplanets on type-I migration is negligible. The migration becomes pronounced before the planet's mass reaches the isolation mass, and decreases the solid component in the disk. Runaway protoplanets form again in the planetesimal disk with decreased surface density. In this paper, we present the analytical formulas that describe the evolution of the solid surface density of the disk as a function of gas-to-dust ratio, gas depletion time scale and semimajor axis, which agree well with our results of N-body simulations. In general, significant depletion of solid material is likely to take place in inner regions of disks. This might be responsible for the fact that there is no planet inside Mercury's orbit in our Solar System. Our most important result is that the final surface density of solid components (Σd) and mass of surviving planets depend on gas surface density (Σg) and its depletion time scale (τdep) but not on initial Σd; they decrease with increase in Σg and τdep. For a fixed gas-to-dust ratio and τdep, larger initial Σd results in smaller final Σd and smaller surviving planets, because of larger Σg. To retain a specific amount of Σd, the efficient disk condition is not an initially large Σd but the initial Σd as small as the specified final one and a smaller gas-to-dust ratio. To retain Σd comparable to that of the minimum mass solar nebula (MMSN), a disk must have the same Σd and a gas-to-dust ratio that is smaller than that of MMSN by a factor of 1.3×(τdep/1 Myr) at ∼1 AU. (Equivalently, type-I migration speed is slower than that predicted by the linear theory by the same factor.) The surviving planets are Mars-sized ones in this case; in order to form Earth-sized planets, their eccentricities must be pumped up to start orbit crossing and coagulation among them. At ∼5 AU, Σd of MMSN is retained under the same condition, but to form a core massive enough to start runaway gas accretion, a gas-to-dust ratio must be smaller than that of MMSN by a factor of 3×τdep/1 Myr.  相似文献   

7.

Context

Current planet search programs are detecting extrasolar planets at a rate of 60 planets per year. These planets show more diverse properties than was expected.

Aims

We try to get an overview of possible gas giant (proto-) planets for a full range of orbital periods and stellar masses. This allows the prediction of the full range of possible planetary properties which might be discovered in the near future.

Methods

We calculate the purely hydrostatic structure of the envelopes of proto-planets that are embedded in protoplanetary disks for all conceivable locations: combinations of different planetesimal accretion rates, host star masses, and orbital separations. At each location all hydrostatic equilibrium solutions to the planetary structure equations are determined by variation of core mass and pressure over many orders of magnitude. For each location we analyze the distribution of planetary masses.

Results

We get a wide spectrum of core-envelope structures. However, practically all calculated proto-planets are in the planetary mass range. Furthermore, the planet masses show a characteristic bimodal, sometimes trimodal, distribution. For the first time, we identify three physical processes that are responsible for the three characteristic planet masses: self-gravity in the Hill sphere, compact objects, and a region of very low adiabatic pressure gradient in the hydrogen equation of state. Using these processes, we can explain the dependence of the characteristic masses on the planet’s location: orbital period, host star mass, and planetesimal accretion rate (luminosity). The characteristic mass caused by the self-gravity effect at close proximity to the host star is typically one Neptune mass, thus producing the so-called hot Neptunes.

Conclusions

Our results suggest that hot Jupiters with orbital period less than 64 days (the exact location of the boundary depends on stellar type and accretion rate) have quite distinct properties which we expect to be reflected in a different mass distribution of these planets when compared to the “normal” planetary population. We use our theoretical survey to produce an upper mass limit for embedded planets: the maximum embedded equilibrium mass (MEEM). This naturally explains the lack of high mass planets between 3 and 64 days orbital period.  相似文献   

8.
The planets with a radius < 4 R observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconfiguring the final orbits of the short-period planets. In this work, based on various initial Rayleigh distributions of the orbital elements, the final semi-major axis distributions of the planets with a radius < 4 R after suffering tidal evolutions are investigated. Our simulations have qualitatively revealed some statistical properties: the semi-major axis and its peak value all increase with the increase of the initial semi-major axis and eccentricity. For the case that the initial mean semi-major axis is less than 0.1 au and the mean eccentricity is larger than 0.25, the results of numerical simulation are approximately consistent with the observation. In addition, the effects of other parameters, such as the tidal dissipation coefficient, stellar mass and planetary mass, etc., on the final semi-major axis distribution after tidal evolution are all relatively small. Based on the simulation results, we have tried to find some clues for the formation mechanism of low-mass planets. We speculate that these low-mass planets probably form in the far place of protoplanetary disk with a moderate eccentricity via the type I migration, and it is also possible to form in situ.  相似文献   

9.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

10.
We investigate the survivability of Trojan-type companions of Neptune during primordial radial migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. We adopt the usual planet migration model in which the migration speed decreases exponentially with a characteristic time scale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus ∼1000 test particle Neptune Trojans with initial distributions of orbital eccentricity, inclination, and libration amplitude similar to those of the known jovian Trojans asteroids. We analyze these simulations to measure the survivability of Neptune's Trojans as a function of migration rate. We find that orbital migration with the characteristic time scale τ=106 years allows about 35% of preexisting Neptune Trojans to survive to 5τ, by which time the giant planets have essentially reached their final orbits. In contrast, slower migration with τ=107 years yields only a ∼5% probability of Neptune Trojans surviving to a time of 5τ. Interestingly, we find that the loss of Neptune Trojans during planetary migration is not a random diffusion process. Rather, losses occur almost exclusively during discrete prolonged episodes when Trojan particles are swept by secondary resonances associated with mean-motion commensurabilities of Uranus with Neptune. These secondary resonances arise when the circulation frequencies, f, of critical arguments for Uranus-Neptune mean-motion near-resonances (e.g., fUN1:2, fUN4:7) are commensurate with harmonics of the libration frequency of the critical argument for the Neptune-Trojan 1:1 mean-motion resonance (fNT1:1). Trojans trapped in the secondary resonances typically have their libration amplitudes amplified until they escape the 1:1 resonance with Neptune. Trojans with large libration amplitudes are susceptible to loss during sweeping by numerous high-order secondary resonances (e.g., fUN1:2≈11fNT1:1). However, for the slower migration, with τ=107 years, even tightly bound Neptune Trojans with libration amplitudes below 10° can be lost when they become trapped in 1:3 or 1:2 secondary resonances between fUN1:2 and fNT1:1. With τ=107 years the 1:2 secondary resonance was responsible for the single greatest episode of loss, ejecting nearly 75% of existing Neptune Trojans. This episode occurred during the late stages of planetary migration when the remnant planetesimal disk would have been largely dissipated. We speculate that if the number of bodies liberated during this event was sufficiently high they could have caused a spike in the impact rate throughout the Solar System.  相似文献   

11.
A number of extrasolar planets have been detected in close orbits around nearby stars. It is probable that these planets did not form in these orbits but migrated from their formation locations beyond the ice line. Orbital migration mechanisms involving angular momentum transfer through tidal interactions between the planets and circumstellar gas-dust disks or by gravitational interaction with a residual planetesimal disk together with several means of halting inward migration have been identified. These offer plausible schemes to explain the orbits of observed extrasolar giant planets and giant planets within the Solar System. Recent advances in numerical integration methods and in the power of computer workstations have allowed these techniques to be applied to modelling directly the mechanisms and consequences of orbital migration in the Solar System. There is now potential for these techniques also to be applied to modelling the consequences of the orbital migration of planets in the observed exoplanetary systems. In particular the detailed investigation of the stability of terrestrial planets in the habitable zone of these systems and the formation of terrestrial planets after the dissipation of the gas disk is now possible. The stability of terrestrial planets in the habitable zone of selected exoplanetary systems has been established and the possibility of the accretion of terrestrial planets in these systems is being investigated by the author in collaboration with Barrie W. Jones (Open University), and with John Chambers (NASA-Ames) and Mark Bailey of Armagh Observatory, using numerical integration. The direct simulation of orbital migration by planetesimal scattering must probably await faster hardware and/or more efficient algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Adrián Brunini 《Icarus》2005,177(1):264-268
The sample of known exoplanets is strongly biased to masses larger than the ones of the giant gaseous planets of the Solar System. Recently, the discovery of two extrasolar planets of considerably lower masses around the nearby Stars GJ 436 and ρ Cancri was reported. They are like our outermost icy giants, Uranus and Neptune, but in contrast, these new planets are orbiting at only some hundredth of the Earth-Sun distance from their host stars, raising several new questions about their origin and constitution. Here we report numerical simulations of planetary accretion that show, for the first time through N-body integrations that the formation of compact systems of Neptune-like planets close to the hosts stars could be a common by-product of planetary formation. We found a regime of planetary accretion, in which orbital migration accumulates protoplanets in a narrow region around the inner edge of the nebula, where they collide each other giving rise to Neptune-like planets. Our results suggest that, if a protoplanetary solar environment is common in the Galaxy, the discovery of a vast population of this sort of ‘hot cores’ should be expected in the near future.  相似文献   

13.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

14.
The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data reveal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as “Kozai cycles” and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (?0.6) and very low (e ? 0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e? 0.1–0.6).  相似文献   

15.
Giant planets in circumstellar disks can migrate inward from their initial (formation) positions at several AUs. Inward radial migration of the planet is caused by torques between the planet and the disk; outward radial migration of the planet is caused by torques between the planet and the spinning star, and by torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem of migrating giant planets by summing torques on planets for various physical parameters of the disk and of planets. We find that Jupiter-mass planets can stably arrive and survive at small heliocentric distances, thus reproducing observed properties of some of the recently discovered extra-solar planets. The range of fates of massive planets is broad, and some perish by losing all their mass onto the central star during Roche lobe overflow, while others survive for the lifetime of the central star. Surviving planets cluster into two groups when examined in terms of final mass and final heliocentric distance: those which have lost mass and those which have not. Some of the observed extrasolar planets fall into each of these two exclusive classes. We also find that there is an inner boundary for planets' final heliocentric distances, caused by tidal torques with the central star. Planets in small orbits are shown to be stable against atmospheric loss.  相似文献   

16.
We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of being able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self sustained MHD turbulence are considered. The conditions for gap formation and the transition from type I migration are investigated and found to depend on whether the single parameter M p R 3/(M* H 3), with M p, M*, R, and H being the protoplanet mass, the central mass, the orbital radius and the disk semi-thickness, respectively, exceeds a number of order unity. We also investigate the coorbital torques experienced by a moving protoplanet in an inviscid disk. This is done by demonstrating the equivalence of the problem for a moving protoplanet to one where the protoplanet is in a fixed orbit which the disk material flows through radially as a result of the action of an appropriate external torque. For sustainable coorbital torques to be realized a quasi steady state must be realized in which the planet migrates through the disk without accreting significant mass. In that case, although there is sensitivity to computational parameters, in agreement with earlier work by Masset and Papaloizou [2003, ApJ, 588, 494] based on global simulations, the coorbital torques are proportional to the migration speed and result in a positive feedback on the migration, enhancing it and potentially leading to a runaway. This could lead to fast migration for protoplanets in the Saturn mass range in massive disks and may be relevant to the mass period correlation for extrasolar planets which gives a preponderance of sub Jovian masses at short orbital periods.  相似文献   

17.
18.
Junko Kominami  Shigeru Ida 《Icarus》2004,167(2):231-243
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided.  相似文献   

19.
The significant orbital eccentricities of most giant extrasolar planets may have their origin in the gravitational dynamics of initially unstable multiple planet systems. In this work, we explore the dynamics of two close planets on inclined orbits through both analytical techniques and extensive numerical scattering experiments. We derive a criterion for two equal mass planets on circular inclined orbits to achieve Hill stability, and conclude that significant radial migration and eccentricity pumping of both planets occurs predominantly by 2:1 and 5:3 mean motion resonant interactions. Using Laplace-Lagrange secular theory, we obtain analytical secular solutions for the orbital inclinations and longitudes of ascending nodes, and use those solutions to distinguish between the secular and resonant dynamics which arise in numerical simulations. We also illustrate how encounter maps, typically used to trace the motion of massless particles, may be modified to reproduce the gross instability seen by the numerical integrations. Such a correlation suggests promising future use of such maps to model the dynamics of more coplanar massive planet systems.  相似文献   

20.
Ravit Helled  Gerald Schubert 《Icarus》2008,198(1):156-162
Sedimentation rates of silicate grains in gas giant protoplanets formed by disk instability are calculated for protoplanetary masses between 1 MSaturn to 10 MJupiter. Giant protoplanets with masses of 5 MJupiter or larger are found to be too hot for grain sedimentation to form a silicate core. Smaller protoplanets are cold enough to allow grain settling and core formation. Grain sedimentation and core formation occur in the low mass protoplanets because of their slow contraction rate and low internal temperature. It is predicted that massive giant planets will not have cores, while smaller planets will have small rocky cores whose masses depend on the planetary mass, the amount of solids within the body, and the disk environment. The protoplanets are found to be too hot to allow the existence of icy grains, and therefore the cores are predicted not to contain any ices. It is suggested that the atmospheres of low mass giant planets are depleted in refractory elements compared with the atmospheres of more massive planets. These predictions provide a test of the disk instability model of gas giant planet formation. The core masses of Jupiter and Saturn were found to be ∼0.25 M and ∼0.5 M, respectively. The core masses of Jupiter and Saturn can be substantially larger if planetesimal accretion is included. The final core mass will depend on planetesimal size, the time at which planetesimals are formed, and the size distribution of the material added to the protoplanet. Jupiter's core mass can vary from 2 to 12 M. Saturn's core mass is found to be ∼8 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号