首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   

2.
Mark Lewis  Glen Stewart 《Icarus》2011,213(1):201-217
This paper analyzes a process that has been observed in simulations of numerous systems where ring material is strongly perturbed by a nearby moon. If the ring particles can be imparted with a forced eccentricity on the order of 10−5 in a single pass by the moon, particle orbits are observed to move towards regions of higher density as a result of the organized collisions that occur in the dense peaks of the satellite wake. The width of the ring can decrease by as much as 90% if the forced eccentricity is greater than 3 × 10−5 and the unperturbed geometric optical depth is greater than 0.03. The fractional change in ring width is relatively insensitive to the particle size so long as the particle radius is much less than the product of the semimajor axis and the forced eccentricity. Including a power law particle size distribution with slope of −2.8 spanning a decade in particle radius reduces the fractional width change by about 10% compared to the uniform particle-size case. Adding gravitational interactions between ring particles only has a significant effect on ring confinement if the unperturbed geometric optical depth exceeds .03, but a 40% reduction in ring width is still achieved in a self-gravitating ring of geometric optical depth 0.3 if the forced eccentricity exceeds 3 × 10−5. This process does not require the material to be in resonance with the moon, nor does it have any minimum mass constraints because particle self-gravity is not required. The collisional damping of satellite wakes therefore provides a simple mechanism by which a single moon can reduce the radial extent of any ringlet that is close to it and has sufficient optical depth for collisions to be significant.  相似文献   

3.
In early January 1888, James E. Keeler was one of the first astronomers to work with the very new Lick Observatory 36-in. refractor. On January 7 while observing Saturn visually on a night of very fine seeing, he discovered a narrow, dark “division” in the outer part of the A ring. Despite repeated attempts, neither Keeler nor any of the other Lick observers saw this gap again until over a year later, on March 2, 1889, another night of extremely good seeing. On that occasion not only Keeler, but also E. S. Holden, J. M. Schaeberle, and E. E. Barnard all observed “Mr. Keeler's division,” as Barnard called it. It could only be seen using very high magnification with this large telescope, at a site known to be excellent, on the nights of very best definition. This gap is not the same as the feature which J. F. Encke had earlier discovered and described as a low-contrast division nearly in the middle of the A ring, and had drawn as nearly the same width as Cassini's division. Later visual observations by B. Lyot and A. Dollfus, again on nights of fine seeing with large telescopes, showed that the Encke division is complex. To them, with the best resolution, it appeared as three wide minima of light, fuzzy, and of low contrast, with a narrow, well-marked minimum of light at its outer edge. The outer edge is just where Keeler placed his gap, although he did not see the low-contrast structure in the Encke division. The images, with much superior resolution obtained from the Pioneer and Voyager space probes, show that the Encke division is even more complex than Lyot and Dollfus realized, but confirm the narrow Keeler feature as a true gap in the outer part of the A ring.  相似文献   

4.
UVIS occultation data show clumping in Saturn’s F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations that are perturbed by Prometheus and by Mimas. The inferred timescales range from hours to months. Occultation profiles of the edge show wide variability, indicating perturbations by local mass aggregations. Structure near the B ring edge is seen in power spectral analysis at scales 200–2000 m. Similar structure is also seen at the strongest density waves, with significance increasing with resonance strength. For the B ring outer edge, the strongest structure is seen at longitudes 90° and 270° relative to Mimas. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator–prey system: the mean aggregate size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. Moons may trigger clumping by streamline crowding, which reduces the relative velocity, leading to more aggregation and more clumping. Disaggregation may follow from disruptive collisions or tidal shedding as the clumps stir the relative velocity. For realistic values of the parameters this yields a limit cycle behavior, as for the ecology of foxes and hares or the “boom-bust” economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material may also allow fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. Any of these more persistent objects would then orbit at the Kepler rate. We would also expect the formation of clumps and some more permanent objects at the other perturbed regions in the rings… including satellite resonances, shepherded ring edges, and near embedded objects like Pan and Daphnis (where the aggregation/disaggregation cycles are forced similar to Prometheus forcing of the F ring).  相似文献   

5.
We show that the combined effect of electrodynamic and gravitational forces can account for a number of features observed by Voyagers 1 and 2 in the isolated fine dust rings of Saturn. These include (a) the appearance and disappearnce of the braids in the F-ring, (b) the eccentricities of the F-ring and the ringlets within the Encke and Cassine divisions and a gap in the C-ring, and (c) the kinks in the eccentric Encke ring. They may also account for the very existence of these rings.  相似文献   

6.
Saturn's F ring has been the subject of study due to its peculiar structure and the proximity to two satellites, named Prometheus (interior) and Pandora (exterior to the ring), which cause perturbations to the ring particles. Early results from Voyager data have proposed that the ring is populated with centimetre- and micrometre-sized particles. The Cassini spacecraft also detected a less dense part in the ring with width of 700 km. Small particles suffer the effects of solar radiation. Burns et al. showed that due to effects of one component of the solar radiation, the Poynting–Robertson drag, a ring particle will decay in the direction of the planet in a time much shorter than the age of the Solar system. In this work, we have analysed a sample of dust particles (1, 3, 5 and 10 μm) under the effects of solar radiation, the Poynting–Robertson drag and the radiation pressure components and the gravitational effects of the satellites Prometheus and Pandora. In this case, the high increase of the eccentricity of the particles leads almost all of them to collide with the outer edge of the A ring. The inclusion of the oblateness of Saturn in this system significantly changes the outcome, since the large variation of the eccentricity is reduced by the oblateness effect. As a result, there is an increase in the lifetime of the particle in the envelope region. Our results show that even the small dust particles, which are very sensitive to the effects of solar radiation, have an orbital evolution similar to larger particles located in the F ring. The fate of all particles is a collision with Prometheus or Pandora in less than 30 years. On the other hand, collisions of these particles with moonlets/clumps present in the F ring could change this scenario.  相似文献   

7.
H. Salo  R. Karjalainen 《Icarus》2004,170(1):70-90
Dynamical N-body simulations (Salo, 992, Nature 359, 619) suggest the formation of trailing density enhancements in the outer portions of Saturn's rings, due to local gravitational instabilities. These Julian-Toomre type wakes, having a pitch angle of about 20°-25° with respect to the local tangential direction, seem to provide a plausible explanation for the observed quadrupole brightness variation in Saturn's A ring (Salo and Karjalainen, 1999, Bull. Am. Astron. Soc. 31, 1160; French et al., 2000, Bull. Am. Astron. Soc. 32, 806; Porco et al., 2001, Bull. Am. Astron. Soc. 33, 1091). We have carried out systematic photometric modeling of gravitational wake structures seen in dynamical simulations, performed for the parameter values of the A ring, using the Monte Carlo radiative transfer code described in Salo and Karjalainen (2003, Icarus 164, 428). Comparisons to the observed asymmetry in various cases are presented (asymmetry in reflected and transmitted light, ring longitude and opening angle dependence), in all cases confirming the applicability of the wake model. Typically, minimum brightness corresponds to viewing/illumination along the long axis of wakes; however, the sense of modeled asymmetry reverses at small tilt angles in diffuse transmission. Implications of wakes on the occultation optical depth profiles and the A ring overall brightness behavior are also discussed: it is shown that the wake structure needs to be taken into account when the Cassini occultation profiles for the A ring are interpreted in terms of variations in surface density. Also, the presence of wakes offers a plausible explanation for the inverse tilt effect seen in the mid A-ring.  相似文献   

8.
Stellar occultations by Saturn’s rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87 μm. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100 μm across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ∼30 μm across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring’s particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion.  相似文献   

9.
Ryuji Morishima  Heikki Salo 《Icarus》2006,181(1):272-291
Previous self-gravitating simulations of dense planetary rings are extended to include particle spins. Both identical particles as well as systems with a modest range of particle sizes are examined. For a ring of identical particles, we find that mutual impact velocity is always close to the escape velocity of the particles, even if the total rms velocity dispersion of the system is much larger, due to collective motions associated to wakes induced by near-gravitational instability or by viscous overstability. As a result, the spin velocity (i.e., the product of the particle radius and the spin frequency) maintained by mutual impacts is also of the order of the escape velocity, provided that friction is significant. For the size distribution case, smaller particles have larger impact velocities and thus larger spin velocities, particularly in optically thick rings, since small particles move rather freely between wakes. Nevertheless, the maximum ratio of spin velocities between the smallest and largest particles, as well as the ratio for translational velocities, stays below about 5 regardless of the width of the size distribution. Particle spin state is one of the important factors affecting the temperature difference between the lit and unlit face of Saturn's rings. Our results suggest that, to good accuracy, the spin frequency is inversely proportional to the particle size. Therefore, the mixing ratio of fast rotators to slow rotators on the scale of the thermal relaxation time increases with the width of the particle size distribution. This will offer means to constrain the particle size distribution with the systematic thermal infrared observations carried by the Cassini probe.  相似文献   

10.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

11.
On the origin of the unusual orbit of Comet 2P/Encke   总被引:1,自引:0,他引:1  
The orbit of Comet 2P/Encke is difficult to understand because it is decoupled from Jupiter—its aphelion distance is only 4.1 AU. We present a series of orbital integrations designed to determine whether the orbit of Comet 2P/Encke can simply be the result of gravitational interactions between Jupiter-family comets and the terrestrial planets. To accomplish this, we integrated the orbits of a large number of objects from the trans-neptunian region, through the realm of the giant planets, and into the inner Solar System. We find that at any one time, our model predicts that there should be roughly 12 objects in Encke-like orbits. However, it takes roughly 200 times longer to evolve onto an orbit like this than the typical cometary physical lifetime. Thus, we suggest that (i) 2P/Encke became dormant soon after it was kicked inward by Jupiter, (ii) it spent a significant amount of time inactive while rattling around the inner Solar System, and (iii) it only became active again as the ν6 secular resonance drove down its perihelion distance.  相似文献   

12.
The sizes, composition, and number of particles comprising the rings of Saturn may be meaningfully constrained by a combination of radar- and radio-astronomical observations. In a previous paper, we have discussed constraints obtained from radar observations. In this paper, we discuss the constraints imposed by complementary “passive” radio observations at similar wavelengths. First, we present theoretical models of the brightness of Saturn's rings at microwave wavelengths (0.34–21.0 cm), including both intrinsic ring emission and diffuse scattering by the rings of the planetary emission. The models are accurate simulations of the behavior of realistic ring particles and are parameterized only by particle composition and size distribution, and ring optical depth. Second, we have reanalyzed several previously existing sets of interferometric observations of the Saturn system at 0.83-, 3.71-, 6.0-, 11.1-, and 21.0-cm wavelengths. These observations all have spatial resolution sufficient to resolve the rings and planetary disk, and most have resolution sufficient to resolve the ring-occulted region of the disk as well. Using our ring models and a realistic model of the planetary brightness distribution, we are able to establish improved constraints on the properties of the rings. In particular, we find that: (a) the maximum optical depth in the rings is ~ 1.5 ± 0.3 referred to visible wavelengths; (b) a significant decrease in ring optical depth from λ3.7 to λ21.0 cm allows us to rule out the possibility that more than ~30% of the cross section of the rings is composed of particles larger than a meter or so; this assertion is essentially independent of uncertainties in particle adsorption coefficient; and (c) the ring particles cannot be primarily of silicate composition, independently of particle size, and the particles cannot be primarily smaller than ~0.1 cm, independently of composition.  相似文献   

13.
We present results of near-infrared (2.26 μm) observations of Saturn's main rings taken with the W.M. Keck telescope during August 8-11, 1995, surrounding the time that Earth crossed Saturn's ring plane. These observations provide a unique opportunity to study the evolution of the ring brightness in detail, and by combining our data with Hubble Space Telescope (HST) results (Nicholson et al., 1996, Science 272, 453-616), we extend the 12-hour HST time span to several days around the time of ring plane crossing (RPX). In this paper, we focus on the temporal evolution of the brightness in Saturn's main rings. We examine both edge-on ring profiles and radial profiles obtained by “onion-peeling” the edge-on data. Before RPX, when the dark (unlit) face of the rings was observed, the inner C ring (including the Colombo gap), the Maxwell gap, Cassini Division and F ring region were very bright in transmitted light. After RPX, the main rings brighten rapidly, as expected. The profiles show east-west asymmetries both before and after RPX. Prior to RPX, the evolution in ring brightness of the Keck and HST data match one another quite well. The west side of the rings showed a nonlinear variation in brightness during the last hours before ring plane crossing, suggestive of clumping and longitudinal asymmetries in the F ring. Immediately after RPX, the east side of the rings brightened more rapidly than the west. A quantitative comparison of the Keck and HST data reveals that the rings were redder before RPX than after; we ascribe this difference to the enhanced multiple scattering of photons passing through to the unlit side of the rings.  相似文献   

14.
We have completed a series of local N-body simulations of Saturn’s B and A rings in order to identify systematic differences in the degree of particle clumping into self-gravity wakes as a function of orbital distance from Saturn and dynamical optical depth (a function of surface density). These simulations revealed that the normal optical depth of the final configuration can be substantially lower than one would infer from a uniform distribution of particles. Adding more particles to the simulation simply piles more particles onto the self-gravity wakes while leaving relatively clear gaps between the wakes. Estimating the mass from the observed optical depth is therefore a non-linear problem. These simulations may explain why the Cassini UVIS instrument has detected starlight at low incidence angles through regions of the B ring that have average normal optical depths substantially greater than unity at some observation geometries [Colwell, J.E., Esposito, L.W., Srem?evi?, M., Stewart, G.R., McClintock, W.E., 2007. Icarus 190, 127-144]. We provide a plausible internal density of the particles in the A and B rings based upon fitting the results of our simulations with Cassini UVIS stellar occultation data. We simulated Cassini-like occultations through our simulation cells, calculated optical depths, and attempted to extrapolate to the values that Cassini observes. We needed to extrapolate because even initial optical depths of >4 (σ > 240 g cm−2) only yielded final optical depths no greater than 2.8, smaller than the largest measured B ring optical depths. This extrapolation introduces a significant amount of uncertainty, and we chose to be conservative in our overall mass estimates. From our simulations, we infer the surface density of the A ring to be , which corresponds to a mass of . We infer a minimum surface density of for Saturn’s B ring, which corresponds to a minimum mass estimate of . The A ring mass estimate agrees well with previous analyses, while the B ring is at least 40% larger. In sum, our lower limit estimate is that the total mass of Saturn’s ring system is 120-200% the mass of the moon Mimas, but significantly larger values would be plausible given the limitations of our simulations. A significantly larger mass for Saturn’s rings favors a primordial origin for the rings because the disruption of a former satellite of the required mass would be unlikely after the decay of the late heavy bombardment of planetary surfaces.  相似文献   

15.
The Cassini-Huygens arrival into the Saturnian system brought a large amount of data about the satellites and rings. Two diffuse rings were found in the region between the A ring and Prometheus. R/2004 S1 is coorbital to Atlas and R/2004 S2 is close to Prometheus. In this work we analysed the closest approach between Prometheus and both rings. As a result we found that the satellite removes particles from R/2004 S2 ring. Long-term numerical simulations showed that some particles can cross the F ring region . The well known region of the F ring, where small satellites are present and particles are being taking from the ring, gains a new insight with the presence of particles from R/2004 S2 ring. The computation of the Lyapunov Characteristic Exponent reveled that the R/2004 S2 ring lies in a chaotic region while R/2004 S1 ring and Atlas are in a stable region. Atlas is responsible for the formation of three regimes in the R/2004 S1 ring, as expected for a satellite embedded in a ring.  相似文献   

16.
Saturn’s moon Rhea is thought to be a simple plasma absorber, however, energetic particle observations in its vicinity show a variety of unexpected and complex interaction features that do not conform with our current understanding about plasma absorbing interactions. Energetic electron data are especially interesting, as they contain a series of broad and narrow flux depletions on either side of the moon’s wake. The association of these dropouts with absorption by dust and boulders orbiting within Rhea’s Hill sphere was suggested but subsequently not confirmed, so in this study we review data from all four Cassini flybys of Rhea to date seeking evidence for alternative processes operating within the moon’s interaction region. We focus on energetic electron observations, which we put in context with magnetometer, cold plasma density and energetic ion data. All flybys have unique features, but here we only focus on several structures that are consistently observed. The most interesting common feature is that of narrow dropouts in energetic electron fluxes, visible near the wake flanks. These are typically seen together with narrow flux enhancements inside the wake. A phase-space-density analysis for these structures from the first Rhea flyby (R1) shows that Liouville’s theorem holds, suggesting that they may be forming due to rapid transport of energetic electrons from the magnetosphere to the wake, through narrow channels. A series of possibilities are considered to explain this transport process. We examined whether complex energetic electron drifts in the interaction region of a plasma absorbing moon (modeled through a hybrid simulation code) may allow such a transport. With the exception of several features (e.g. broadening of the central wake with increasing electron energy), most of the commonly observed interaction signatures in energetic electrons (including the narrow structures) were not reproduced. Additional dynamical processes, not simulated by the hybrid code, should be considered in order to explain the data. For the small scale features, the possibility that a flute (interchange) instability acts on the electrons is discussed. This instability is probably driven by strong gradients in the plasma pressure and the magnetic field magnitude: magnetometer observations show clearly signatures consistent with the (expected) plasma pressure loss due to ion absorption at Rhea. Another potential driver of the instability could have been gradients in the cold plasma density, which are, however, surprisingly absent from most crossings of Rhea’s plasma wake. The lack of a density depletion in Rhea’s wake suggests the presence of a local cold plasma source region. Hybrid plasma simulations show that this source cannot be the ionized component of Rhea’s weak exosphere. It is probably related to accelerated photoelectrons from the moon’s negatively charged surface, indicating that surface charging may play a very important role in shaping Rhea’s magnetospheric interaction region.  相似文献   

17.
We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface frost layers.Our investigation is motivated by laboratory results that show that interpenetration of surface layers can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings. Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion parameters in light of existing ring observations, to make predictions about particle populations throughout the rings, and to discover other diagnostics that may constrain bonding parameters.We considered the effects of five parameters on the equilibrium characteristics of our ring simulations: speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital distance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we present data from 95 simulations.We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that reproduce the observed size distribution and maximum particle size. It turns out that the parameters that match observations differ between the A and B rings, and we discuss the potential implications of this result. We also comment on other observable consequences of cohesion for the rings, such as optical depth and scale height effects, and discuss whether very large objects (e.g., “propeller” source objects) are grown bottom-up from cohesion of smaller ring particles.  相似文献   

18.
The region in the Saturn system between the F ring and the outer edge of the A ring is an area that appears, in images from the imaging experiment, to be virtually devoid of material except for three small satellites. Near the orbit of 1980S28, Atlas—the innermost satellite—the Voyager Photopolarimeter Stellar Occultation data show a discontinuity in count rate which marks a boundary between the tenuous materials near the outer edge of the A ring and the orbit of Atlas. The data pertaining to this region have been examined with the aid of statistics and models generated from other similar ring structures. It is concluded that the discontinuity is real, implying the existence of tenuous material of normal optical depth of 0.01 to 0.006 in this region.  相似文献   

19.
20.
In this paper a method is concerned which makes it possible to describe numerically and analytically the most famous structures in the non-equilibrium ionosphere, such as stratified and yacht sail like structures, flute jets, wakes and clouds. These problems are of practical interest in space sciences, astrophysics and in turbulence theory, and also of fundamental interest since they enable one to concentrate on the effects of the ambient electric and magnetic fields. Disturbances of charged particle flows due to the ambient flow interactions with bodies are simulated with taking into account the ambient magnetic field effect. The effects of interactions between solid surfaces and the flows was simulated by making use of an original image method. The flow disturbances were described by the Boltzmann equation. In the case of the ambient homogeneous magnetic field the Boltzmann equation is solved analytically. The case of diffuse reflection of particles by surface is considered in detail. The disturbances of charged particle concentration are calculated in 3D space. The contours of constant particle concentration obtained from numerical simulations illustrate the dynamics of developing stratifications and flute structures in charged particle jets and feffect. The wakes under the ambient magnetic field effect. The basic goal of this paper is to present the method and to demonstate its possibility for simulations of turbulence, plasma jets, wakes and clouds inthe ionosphere and Space when effects of electric and magnetic fields are taken into account. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号