首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erofeev  D.V. 《Solar physics》1999,186(1-2):431-447
Large-scale distribution of the sunspot activity of the Sun has been analyzed by using a technique worked out previously (Erofeev, 1997) to study long-lived, non-axisymmetric magnetic structures with different periods of rotation. Results of the analysis have been compared with those obtained by analyzing both the solar large-scale magnetic field and large-scale magnetic field simulated by means of the well-known flux transport equation using the sunspot groups as a sole source of new magnetic flux in the photosphere. A 21-year period (1964–1985) has been examined.The rotation spectra calculated for the total time interval of two 11-year cycles indicate that sunspot activity consists of a series of discrete components (modes) with different periods of rotation. The largest-scale component of the sunspot activity reveals modes with 27-day and 28-day periods of rotation situated, correspondingly, in the northern and southern hemispheres of the Sun, and two modes with rotation periods of about 29.7 days situated in both hemispheres. Such a modal structure of the sunspot activity agrees well with that of the large-scale solar magnetic field. Moreover, the magnetic field distribution simulated with the flux transport equation also reveals the same modal structure. However, such an agreement between the large-scale solar magnetic field and both the sunspot activity and simulated magnetic field is unstable in time; so, it is absent in the northern hemisphere of the Sun during solar cycle No. 20. Thus the sources of magnetic flux responsible for formation of the large-scale, rigidly rotating magnetic patterns appear to be closely connected, but are not identical with the discrete modes of the sunspot activity.  相似文献   

2.
We study the effects of two-dimensional turbulence generated in sunspot umbra due to strong magnetic fields and Alfven oscillations excited in sunspots due to relatively weak magnetic fields on the evolution of sunspots. Two phases of sunspot magnetic field decaying are shown to exist. The initial rapid phase of magnetic field dissipation is due to two-dimensional turbulence. The subsequent slow phase of magnetic field decaying is associated with Alfven oscillations. Our results correspond to observed data that provide evidence for two types of sunspot evolution. The effect of macroscopic diamagnetic expulsion of magnetic field from the convective zone or photosphere toward sunspots is essential in supporting the long-term stability and equilibrium of vertical magnetic flux tubes in sunspots.  相似文献   

3.
During 23–28 August 1988, at the Huairou Solar Observation Station of Beijing Observatory, the full development process of the region HR 88059 was observed. It emerged near the center of the solar disk and formed a medium active region. A complete series of vector magnetograms and photospheric and chromospheric Dopplergrams was obtained. From an analysis of these data, combined with some numerical simulations, the following conclusions can be drawn. (1) The emergence of new magnetic flux from enhanced networks followed by sunspot formation is an interesting physical process which can be simply described by MHD numerical simulation. The phenomena accompanying it occur according to a definite law summarized by Zwaan (1985). The condition for gas cooling and sunspot formation seems to be transverse field strength > 50 G together with longitudinal field strength > 700 G. For a period of 4 to 5 hours, the orientation of the transverse field shows little change. The configuration of field lines may be derived from vector magnetograms. The arch filament system can be recognized as an MHD shock. (2) New opposite bipolar features emerge within the former bipolar field with an identical strength which will develop a sunspot group complex. Also, arch filament systems appear there located in the position of flux emergence. The neutral line is often pushed aside and curved, leading to faculae heating and the formation of a current sheet. In spite of complicated Dopplergrams, the same phenomena occur at the site of flux emergence as usual: upward flow appears at the location of the emerging and rapidly varying flux near the magnetic neutral line, and downdraft occurs over large parts of the legs of the emerging flux tubes. The age of magnetic emerging flux (or a sunspot) can be estimated in terms of transverse field strengths: when 50 G < transverse field < 200 G, the longitudinal magnetogram and Dopplergram change rapidly, which indicates a rigourously emerging magnetic flux. When the transverse field is between 200 and 400 G, the area concerned is in middle age, and some of the new flux is still emerging there. When the transverse field > 400 G, the variation of the longitudinal magnetogram slows down and the emerging arch becomes relatively stable and a photospheric Evershed flow forms at the penumbra of the sunspot.  相似文献   

4.
Y.-M. Wang 《Solar physics》2004,224(1-2):21-35
The Sun’s large-scale external field is formed through the emergence of magnetic flux in active regions and its subsequent dispersal over the solar surface by differential rotation, supergranular convection, and meridional flow. The observed evolution of the polar fields and open flux (or interplanetary field) during recent solar cycles can be reproduced by assuming a supergranular diffusion rate of 500 – 600 km2 s−1 and a poleward flow speed of 10 –20 m s−1. The nonaxisymmetric component of the large-scale field decays on the flow timescale of ∼1 yr and must be continually regenerated by new sunspot activity. Stochastic fluctuations in the longitudinal distribution of active regions can produce large peaks in the Sun’s equatorial dipole moment and in the interplanetary field strength during the declining phase of the cycle; by the same token, they can lead to sudden weakenings of the large-scale field near sunspot maximum (Gnevyshev gaps). Flux transport simulations over many solar cycles suggest that the meridional flow speed is correlated with cycle amplitude, with the flow being slower during less active cycles.  相似文献   

5.
Agalakov  B. V.  Ledenev  V. G.  Lubyshev  B. I.  Nefedyev  V. P.  Yazev  S. A.  Zubkova  G. N.  Kerdraon  A.  Urbarz  H. W. 《Solar physics》1997,173(2):305-318
Based on observations from the Siberian solar radio telescope, and invoking data from other observatories, we investigate preflare changes in the sunspot and floccular sources of radio emission and the development of an importance 2N flare in the chromosphere and corona in the active region on August 23, 1988.It has been ascertained that preflare changes became observable six hours prior to the flare onset and manifested themselves in intense flux fluctuations above the sunspot and in an enhancement of the source emission flux above the flocculus.It is shown that the flare onset is associated with a newly emerged magnetic flux in the form of a pore near the filament and with the appearance of radio sources above the filament. The flare was accompanied by type III radio bursts and a noise storm at meter wavelengths. Coronal mass ejection parameters are estimated from type III burst observations.  相似文献   

6.
The cyclicity in the latitudinal distribution of the growth and decay rates of the total magnetic fluxes for weak magnetic fields is investigated. The synoptic maps of the line-of-sight solar magnetic field strength obtained at the Kitt Peak Observatory (USA) from January 1, 1977, to September 30, 2003, are used as the observational material. The latitudinal distributions of the growth rates of total magnetic fluxes with various strengths constructed from them and their evolution during three solar cycles have been compared with the analogous distribution of the total powers of rotation with various periods as well as the relative sunspot numbers and areas. The results obtained allow a unified picture of the development of solar cycles for weak and strong magnetic fields to be formulated. A new cycle begins with the growth of weak magnetic fields with a strength of 0–200 G at latitudes 20°–25° in both hemispheres. This occurs one year before the activity minimum determined from sunspots. Two years later, the growth rate of the total magnetic flux, which begins to propagate equatorward and poleward, reaches a maximum. This process coincides with the onset of the growth of strong sunspot magnetic fields at the corresponding latitudes and the formation of zones with a stable rotation. Subsequently, a fall-off in growth rate and then a flux decay for weak magnetic fields correspond to the growth of the sunspot areas. In light of the dynamo theory, the results obtained suggest that strong and weak magnetic fields are generated near the bottom of the convection zone, while the observed differences in their behavior are determined by the interaction of emerging magnetic flux tubes of various strengths with turbulent plasma motions inside the Sun.  相似文献   

7.
R. P. Kane 《Solar physics》2006,236(1):207-226
After increasing almost monotonically from sunspot minimum, sunspot activity near maximum falters and remains in a narrow grove for several tens of months. During the 2–3 years of turmoil near sunspot maximum, sunspots depict several peaks (Gnevyshev peaks). The spaces between successive peaks are termed as Gnevyshev Gaps (GG). An examination showed that the depths of the troughs varied considerably from one GG to the next in the same cycle, with magnitudes varying in a wide range (<1% to ∼20%). In any cycle, the sunspot patterns were dissimilar to those of other solar parameters, qualitatively as well as quantitatively, indicating a general turbulence, affecting different solar parameters differently. The solar polar magnetic field reversal does not occur at the beginning of the general turmoil; it occurs much later. For cosmic ray (CR) modulation which occurs deep in the heliosphere, one would have thought that the solar open magnetic field flux would play a crucial role, but observations show that the sunspot GGs are not reflected well in the solar open magnetic flux, where sometimes only one peak occurred (hence no GG at all), not matching with any sunspot peak and with different peaks in the northern and southern hemispheres (north – south asymmetry). Gaps are seen in interplanetary parameters but these do not match exactly with sunspot GGs. For CR data available only for five cycles (19 – 23), there are CR gaps in some cycles, but the CR gaps do not match perfectly with gaps in the solar open magnetic field flux or in interplanetary parameters or with sunspot GGs. Durations are different and/or there are variable delays, and magnitudes of the sunspot GGs and CR gaps are not proportional. Solar polar magnetic field reversal intervals do not coincide with either sunspot GGs or CR gaps, and some CR gaps start before magnetic field reversals, which should not happen if the magnetic field reversals are the cause of the CR gaps.  相似文献   

8.
Regarding new bipolar magnetic regions as sources of flux, we have simulated the evolution of the radial component of the solar photospheric magnetic field during 1976–1984 with a spatial resolution of about 34 000 km, and have derived the corresponding evolution of its absolute value averaged over the visible disk. For nominal values of the transport parameters, this simulated gross field is in close, though imperfect, agreement with the observed gross field and its associated indices of solar activity. By analyzing the response of the simulated gross field to variations in the transport parameters and the source properties, we find that the simulated field originates in newly erupted bipolar regions. The lifetimes of these regions are almost always less than 3 mo. Consequently, the strength of the simulated gross field is a measure of the current level of solar activity, and any recurrent patterns with lifetimes in excess of 6 mo must reflect the continuing eruption of new flux at active longitudes rather than the persistence of old flux in long-lived magnetic structures.E. O. Hulburt Center for Space Research.Laboratory for Computational Physics.Berkeley Research Associates, Springfield, VA.  相似文献   

9.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

10.
We show that the rotation of coronal holes can be understood in terms of a current-free model of the coronal magnetic field, in which holes are the footpoint locations of open field lines. The coronal field is determined as a function of time by matching its radial component to the photospheric flux distribution, whose evolution is simulated including differential rotation, supergranular diffusion, and meridional flow. We find that ongoing field-line reconnection allows the holes to rotate quasi-rigidly with their outer-coronal extensions, until their boundaries become constrained by the neutral line of the photospheric field as it winds up to form stripes of alternating magnetic polarity. This wind-up may be significantly retarded by a strong axisymmetric field component which forces the neutral line to low latitudes; it is also gradually halted by the cross-latitudinal transport of flux via supergranular diffusion and a poleward bulk flow. We conclude that a strong axisymmetric field component is responsible for the prolonged rigid rotation of large meridional holes during the declining phase of the sunspot cycle, but that diffusion and flow determine the less rigid rotation observed near sunspot maximum, when the holes corotate with their confining polarity stripes.  相似文献   

11.
A sample of 36 S-component sources observed by the radio telescope RATAN-600 was compared with calculations of gyromagnetic emission and bremsstrahlung based on recent sunspot models. The diagnostic possibilities of the spectral distributions in the radio flux, the degree of polarization, and the source sizes for the estimation of magnetic scale heights and other source parameters were checked by different methods.Depending on the magnetic field structure, the observations show different types of polarization spectra. Most regular spectra and highest values of the degree of polarization were observed from sources above the leading part of the associated spot group. Magnetic scale heights were found to be intrinsically associated with the source size of the gyromagnetic emission.The flare production rate of active regions appears to be related to their S-component flux and magnetic scale heights.  相似文献   

12.
H. Lin  J. Varsik  H. Zirin 《Solar physics》1994,155(2):243-256
High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor - the ratio of the area occupied by the magnetic elements to the total area - of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993.We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle.We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70°–80°) and low (60°–70°) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.  相似文献   

13.
Photospheric magnetic fluxes and average field strengths have been measured beneath 33 coronal holes observed on 63 occasions during 1975–1980. The principal result is that low-latitude holes contained 3 times more flux near sunspot maximum than near minimum despite the fact that their sizes were essentially the same. Average magnetic field strengths ranged from 3–36 G near sunspot maximum compared to 1–7 G near minimum. Evidently the low-latitude coronal holes received a proportion of the extra flux that was available at low latitudes near sunspot maximum.Visiting Astronomer, KPNO.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
Two-dimensional maps of radio brightness temperature and polarization, computed assuming thermal emission with free-free and gyroresonance absorption, are compared with observations of active region 2502, performed at Westerbork at λ = 6.16 cm during a period of 3 days in June 1980. The computation is done assuming a homogeneous model in the whole field of view (5′ × 5′) and a force-free extrapolation of the photospheric magnetic field observed at MSFC with a resolution of 2″.34. The mean results are the following:
  1. A very good agreement is found above the large leading sunspot of the group, assuming a potential extrapolation of the magnetic field and a constant conductive flux in the transition region ranging from 2 × 106 to 107 erg cm?2s?1.
  2. A strong radio source, associated with a new-born moving sunspot, cannot be ascribed to thermal emission. It is suggested that this source may be due to synchrotron radiation by mildly relativistic electrons accelerated by resistive instabilities occurring in the evolving magnetic configuration. An order-of-magnitude computation of the expected number of accelerated particles seems to confirm this hypothesis.
  相似文献   

15.
Shibu K. Mathew 《Solar physics》2008,251(1-2):515-522
We investigate p-mode absorption in a sunspot using SOHO/MDI high-resolution Doppler images. The Doppler power computed from a 3.5-hour data set is used for studying the absorption in a sunspot. The result shows an enhancement in absorption near the umbral?–?penumbral boundary of the sunspot. We attempt to relate the observed absorption with the magnetic-field structure of the sunspot. The transverse component of the potential field is computed by using the observed SOHO/MDI line-of-sight magnetograms. A comparison of the power map and the computed potential field shows enhanced absorption near the umbral?–?penumbral boundary where the computed transverse field strength is higher.  相似文献   

16.
Hale region 16898 was observed by the Westerbork Synthesis Radio Telescope at 6 cm and by the Ultraviolet Spectrometer and Polarimeter and the X-Ray Spectrometer on the Solar Maximum Mission satellite. Optical pictures of the same active region were taken at Sacramento Peak, Big Bear, and Meudon Observatories. The radio emission mechanisms are identified by comparing radio data with ultraviolet and soft X-ray data. The height of the radio sources and the magnetic field strength at that height are deduced. A radio source above a large sunspot shows a crescent shaped depression of circular polarization and a high brightness temperature. The emission mechanism is identified as gyroresonance at the second and the third harmonic layers and it is found that the second harmonic layer, where the magnetic field strength is 900 G, must be in the corona. An extended loop-like source connecting the leading and the following part of the active region as well as the sources associated with small spots are mainly due to thermal free-free emission by hot and dense plasma which is also observed in ultraviolet and soft X-ray radiation. The calculated radio brightness temperature, using the physical parameters deduced from the ultraviolet and soft X-ray line intensities, agrees with the observed brightness temperature. The height of the low brightness temperature sources above the small spots is 6000 ± 3000 km and that above the large spot is less than 3000 km: the source above the large spot does not show any shift relative to the sunspot due to the projection effect. Very strong radio emission was found which was associated with the merging of a group of small spots into the large sunspot. In the same day, warm ( 106 K) and dense matter was present above the large spot. Evidence for nonthermal emission is presented.  相似文献   

17.
Orientation of nonspherical cosmic dust grains is found in anisotropic corpuscular or radiative fluxes and in the presence of the magnetic field; cosmic grains being approximated by axially symmetric ellipsoids. A comparatively small twisting of grains is shown to cause differences in scattering right-hand and left-hand circularly polarized photons and growth of the angular momentum. If the period of the grain's angular momentum precession induced by the magnetic field is shorter than the time of orientation by corpuscular or radiative flux, distribution of grains' axes becomes symmetric relative to the magnetic lines. This orientation mechanism easily explains interstellar linear polarization observed in our Galaxy. The mechanisms of grains' orientation near the Becklin-Neugebauer infrared source, in the B 96 reflected cloud near RY Tau and in cometary heads are proposed.  相似文献   

18.
We calculate analytical and numerical solutions to the magnetic flux transport equation in the absence of new bipolar sources of flux, for several meridional flow profiles and a range of peak flow speeds. We find that a poleward flow with a broad profile and a nominal 10 m s–1 maximum speed concentrates the large-scale field into very small caps of less than 15° half-angle, with average field strengths of several tens of gauss, contrary to observations. A flow which reaches its peak speed at a relatively low latitude and then decreases rapidly to zero at higher latitudes leads to a large-scale field pattern which is consistent with observations. For such a flow, only lower latitude sunspot groups can contribute to interhemispheric flux annihilation and the resulting decay and reversal of the polar magnetic fields.  相似文献   

19.
In the absence of new bipolar sources of flux, the large-scale magnetic field at the solar photosphere decays due to differential rotation, meridional flow, and supergranular diffusion. The rotational shear quickly winds up the nonaxisymmetric components of the field, increasing their latitudinal gradients and thus the rates of diffusive mixing of their flux. This process is particularly effective at mid latitudes, where the rotational shear is largest, so that eventually low- and high-latitude remnants of the initial, nonaxisymmetric field pattern survive. In this paper I solve analytically the transport equation describing the evolution of the large-scale photospheric field, to study its time-asymptotic behavior. The solutions are rigidly rotating, uniformly decaying distributions of flux, wound up by differential rotation and localized near either the equator or the poles. A balance between azimuthal transport of flux by the rotational shear and meridional transport by the diffusion gives rise to the rigidly rotating field patterns. The time-scale on which this balance is achieved, and also on which the nonaxisymmetric flux decays away, is the geometric mean of the short time-scale for shearing by differential rotation and the long time-scale for dispersal by supergranular diffusion. A poleward meridional flow alters this balance on its own, intermediate time-scale, accelerating the decay of the nonaxisymmetric flux at low latitudes. Such a flow also hastens the relaxation of the axisymmetric field to a modified dipolar configuration.  相似文献   

20.
We report an instance of localized chromospheric polarity reversal in a rapidly-formed sunspot which appears to be part of new emerging flux. The chromospheric polarity reversal is preceded by extraordinarily fast growth of the transverse magnetic field and an increase in the line-of-sight magnetic flux of the newly formed sunspot in the photosphere. The strength of this reversal is more than 350 G at maximum, in contrast to approximately - 1300 G for the line-of-sight field and 400 G for the transverse field in the photosphere. Continued flare activity takes place around the site of the reversal with progressively increasing flare size and extent. It is suggested that a kinked or knotted flux loop, or a self-closed flux system developed above the fast-forming sunspot. So far, this phenomenon has been revealed in several active regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号