首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Susanne Schneider   《Limnologica》2007,37(4):281-289
Ecological optima and ranges of submerged macrophytes are, amongst other factors, assumed to be influenced by ecoregion and flow velocity. In order to test the influence of ecoregion within Europe, species indicator values of three European macrophyte river trophic indices were compared to each other. Species indicator values of the United Kingdom (UK), French and German bioindication methods are significantly correlated with each other. The most obvious difference between the three indicator systems is the number of included indicator taxa. Two species exhibit major differences in indicator values: Callitriche hamulata has a broader ecological amplitude in Germany and France than in the UK, where it is restricted to oligotrophic rivers, while Ranunculus fluitans has a broad ecological amplitude in the UK, whereas the species is restricted to eutrophic rivers in Germany and France.

In order to test if current velocity has an influence on macrophyte trophic indicator qualities, species indicator values of a river (Trophic Index of Macrophytes, TIM) and a lake macrophyte trophic index (Macrophyte Index, MI), both of them applicable in Bavaria, Germany, were compared to each other. Species indicator values are significantly correlated. The most important difference is that different species are included in lake and river indicator lists. Only approximately 60% of the total species are used in both TIM and MI. Three species exhibit a major difference in ecological optima between rivers and lakes: Ranunculus circinatus has a broader ecological amplitude in rivers whereas the species is restricted to eutrophic lakes, Myriophyllum spicatum and Nuphar lutea show the opposite reaction.  相似文献   


2.
Submerged macrophyte vegetation has been mapped in four calcareous groundwater-fed streams in Bavaria (southern Germany) in order to compare and assess two different methods of river bioindication. The first one, the trophic index of macrophytes (TIM), is a tool to assess the trophic status of running waters. In contrast, the reference index (RI) is an ecological index which evaluates the difference between a reference community and the actual submerged vegetation, depending on the river type, as required by the Water Framework Directive. Water nutrient concentrations were measured once at selected sites in all water courses.The TIM reflects water phosphorus concentrations, accounting also for nutrients enrichment in the sediment, and is not influenced by shading, depth, substrate and flow velocity of the water course. The TIM is very sensitive to small variations in P concentration when the P level is low, while the index tends to a maximum as soluble reactive phosphorus (SRP) and total phosphorus (Ptot) exceed a certain value.The RI indicates river ecological status which is not only influenced by trophic status but by every factor leading to a deviation of the actual macrophyte community from the reference community. In the investigated rivers the RI indicated reduced flow velocity caused by milldams and shading by riparian vegetation, in addition to trophic status.In rivers that are at the boundary between two different river types, classification of river type can play a crucial role for river status assessment. Incorrect classification of river type can lead to both, a “too good” and “too bad” assessment.  相似文献   

3.
The ecological state of 18 small rivers in Minsk Region was for the first time estimated by jointly used macrophyte-based characteristics, including saprobity index, biological macrophyte index for rivers, and a scale of cenotic/supercenotic organization of aquatic and coastal-aquatic plants. Rivers with relatively safe ecological status were shown to dominate, while other rivers are in a safe and satisfactory state. The proposed approach to determining the ecological quality of watercourses is based on the calculation of a complex characteristic, i.e., an integral macrophyte index of small river ecological status; this index has been developed in the context of a classification scheme of surface water quality in the National Environmental Monitoring System of the Republic of Belarus.  相似文献   

4.
Indicating the Trophic State of Running Waters by Using TIM (Trophic Index of Macrophytes) – Exemplary Implementation of a New Index in the River Inninger Bach The river Inninger Bach represents the outflow of the lake Wörthsee (Bavaria). The mean pH of the calcareous river has a value of ca. 8 during the vegetation period, the mean conductivity is about 350 to 400 μS/cm. The macrophyte vegetation of the river course was mapped and the nutrient concentrations of both the water body and the sediment were measured. In every mapping section the Trophic Index of Macrophytes (TIM) was calculated. By cluster analysis the mapping sections were grouped into three zones which differed in macrophyte vegetation. These differences are not associated with varying nutrient concentrations but are mainly due to differences in the degree of shading. In spite of the characterisation of the lake Wörthsee as oligo‐mesotrophic the river Inninger Bach, which represents the outflow of the lake Wörthsee, is classified as meso‐eutrophic by the Trophic Index of Macrophytes TIM. The increased trophic state of the river compared to the lake is caused by the river Krebsbach, a small tributary flowing into the river Inninger Bach only a short stretch downstream of its outflow of the lake Wörthsee. The river Krebsbach shows a total phosphorus concentration of about 56 μg/L P. The input of diaspores of submerged macrophytes both from the oligo‐mesotrophic lake Wörthsee and the eutrophic river Krebsbach leads to a submerged vegetation comprising species with different optima in regard to the trophic situation. This is one of the main reasons why many values of the TIM have to be labeled as “not sure”.  相似文献   

5.
The European Water Framework Directive requires that member states assess all their surface waters based on a number of biological elements, including macroinvertebrates. Since 1989, the Flemish Environment Agency has been using the Belgian Biotic Index for assessing river water quality based on macroinvertebrates. Throughout the years, the Belgian Biotic Index has proven to be a reliable and robust method providing a good indication of general degradation of river water and habitat quality. Since the Belgian Biotic Index does not meet all the requirements of the Water Framework Directive, a new index, the Multimetric Macroinvertebrate Index Flanders (MMIF) for evaluating rivers and lakes was developed and tested. This index was developed in order to provide a general assessment of ecological deterioration caused by any kind of stressor, such as water pollution and habitat quality degradation. The MMIF is based on macroinvertebrate samples that are taken using the same sampling and identification procedure as the Belgian Biotic Index. The index calculation is a type-specific multimetric system based on five equally weighted metrics, which are taxa richness, number of Ephemeroptera, Plecoptera and Trichoptera taxa, number of other sensitive taxa, the Shannon-Wiener diversity index and the mean tolerance score. The final index value is expressed as an Ecological Quality Ratio ranging from zero for very bad ecological quality to one for very good ecological quality. The MMIF correlates positively with dissolved oxygen and negatively with Kjeldahl nitrogen, total nitrogen, ammonium, nitrite, total phosphorous, orthophosphate and biochemical and chemical oxygen demand. This new index is now being used by the Flemish Environment Agency as a standard method to report about the status of macroinvertebrates in rivers and lakes in Flanders within the context of the European Water Framework Directive.  相似文献   

6.
Measuring ecological change of aquatic macrophytes in Mediterranean rivers   总被引:1,自引:0,他引:1  
A metric was developed for assessing anthropogenic impacts on aquatic macrophyte ecology by scoring macrophyte species along the main gradient of community change. A measure of ecological quality was then calculated by Weighted Averaging (WA) of these species scores at a monitoring site, and comparison to a reference condition score. This metric was used to illustrate the difficulties of developing aquatic macrophyte indices based on indicator species in Mediterranean rivers. The response of the metric to a nutrient gradient was examined within two different river typologies: the national typology designed for the Water Framework Directive and a typology that segregates the environmental variables to produce maximum species similarity within a river type. Both typologies showed the strong north-south climatic divide in Portugal, with southern rivers having long periods without rainfall and often without flowing water in the summer. Overall, the metric responded well to nutrient impacts however it performed poorly in some southern lowland river types. This was thought to be due to low numbers of aquatic macrophytes in temporary rivers. Non-aquatic species that establish in the river channel of temporary rivers may have to be included in indices to improve performance. Also, simple Weighted Averaging (WA) metrics may be insensitive to abundance changes and loss of rarer indicators in lowland Mediterranean rivers. More sophisticated methods of using WA are suggested, as well as further research into developing assessment methods specific to the character of Mediterranean rivers.  相似文献   

7.
Climate change is inevitably altering the hydrological regime of water bodies. The interest in changing behaviour of intermittent rivers is increasing in many countries. This research was focused on intermittent rivers (rivers which naturally, periodically cease to flow) in Lithuania. The purpose of this research was to provide an overview of flow intermittency phenomena according to available data in a historical period and to evaluate the impact of catchment geographical features and climate variability on zero-flow events. The calculated indices of flow intermittency showed that the selected rivers had very different flow regimes. The threshold for the separation of typically intermittent rivers from only occasionally intermittent ones was suggested. Multiple linear regression analysis defined the crucial role of catchment size and watercourse slope on the river cessation process in Lithuania. The applied non-parametric Wilcoxon–Mann–Whitney test revealed the significance of the relationship between precipitation (in June–September) and zero-flow duration. Flow intermittency phenomena in Lithuanian rivers were linked to a low-frequency teleconnection pattern (SCAND index). A methodology of estimating the relation between river intermittency and large-scale atmospheric circulation pattern (based on SCAND index) was created. The generated regression equations between flow intermittency indices and catchment characteristics might be useful for the estimation of zero-flows in ungauged river catchments. The main aspect of future investigations might be related to forecasting flow intermittency using modern hydrological models and climate scenarios as well as the defined relationships between zero-flow indices and physico-geographical features of river catchments.  相似文献   

8.
Since hydromorphology in about 80% of German streams and rivers is degraded to a high degree, increased efforts in hydromorphological renaturalization are necessary. A measurement of the success of the first realized projects shows that improvement in stream morphology has a remarkably positive influence on aquatic ecology. An example of a restored stretch of a lowland stream in Saxony-Anhalt is used to describe the possibilities of success measurement programs for improvement of poor renaturalization. Therefore, a combined morphological and hydrobiological approach was developed. An integrated ecological assessment is possible by using the multimetric index EQIM (Ecological Quality Index using benthic Macroinvertebrates) and the GFI (German Fauna Index). The latter represents a tolerance measure to evaluate the hydromorphological status of a site by using certain taxa that indicate either positive or negative physical attributes. To consider the special characteristics of the stream in its landscape unit, specific reference conditions (‘Leitbild’) were defined for macroinvertebrate communities by sampling comparable but undisturbed streams in the same landscape unit. Only the combination of biological indices, hydromorphological mapping and comparison to the reference status allows for an expressive evaluation of renaturalization measures and precise conclusions for their improvement.  相似文献   

9.
The need to assess the environmental status of marine and coastal waters according to the EU Water Framework Directive (WFD) encouraged the design of specific biotic indices to evaluate the response of benthic communities to human-induced changes in water quality. In the present study three of these indices, the traditional Shannon Wiener Index (H') and the more recently published AMBI (AZTI' Marine Biotic Index) and BQI (Benthic Quality Index), were tested along a salinity gradient in the southern Baltic Sea. The comparison of the three indices demonstrates that in the southern Baltic Sea the ecological quality (EcoQ) classification based on macrozoobenthic communities as indicator greatly depends on the biotic index chosen. We found a significant positive relation between species number, H', BQI and salinity resulting in EcoQ status of "Bad", "Poor" or "Moderate" in areas with a salinity value below 10 psu. The AMBI was less dependent on salinity but appear to partly overestimate the EcoQ status. Presently none of these biotic indices appear to be adjusted for application in a gradient system as given in the southern Baltic Sea. A potential approach describing how to overcome this limitation is discussed.  相似文献   

10.
A new multimetric MMI_PL index, which is based on the macroinvertebrate composition and combines six single key metrics, has already been implemented in Poland according to the requirements of the EU Water Framework Directive. The objectives of our survey were to assess the biological water quality using the new multimetric MMI_PL index in both reference and human-impacted streams, to analyze whether the values of the new multimetric index properly reflect the ecological status of the water in upland and mountain streams as well as to determine which environmental factors influence the distribution of benthic macroinvertebrates and the values of the metrics. The study was carried out from 2007 to 2010 in three Ecoregions that were established by the EU WFD. A total of 60 sampling sites: 36 reference sites that were situated in the headwaters of mountain streams at mid- and high-altitudes and 24, human-impacted sampling sites were selected. The benthic macroinvertebrate surveys were supported by both a hydromorphological and macrophyte assessment according to the River Habitat Survey (RHS) and to the Macrophyte Methods for Rivers. Canonical correspondence analysis (CCA) showed that the values of the Habitat Quality Assessment (HQA) index, conductivity, pH and altitude were the parameters most associated (statistically significant) with the distribution of benthic macroinvertebrate taxa and the values of the metrics in both the reference and human-impacted (impaired) sections of the streams in Ecoregions 9, 10 and 14. The new MMI_PL index was useful for biological water quality assessment and was also important for separating both the reference and impaired sections of streams. The MMI_PL index and some key metrics performed contrary to what was expected in relation to the reference high-altitude siliceous streams (the High Tatra Mts., Ecoregion 10). Low values of multimetric index and key metrics did not properly reflect their high ecological status and pristine character as reflected by the hydromorphological (RHS) and macrophyte surveys or the physical and chemical parameters of the water.  相似文献   

11.
Macroinvertebrate communities from the lower Nysa Kłodzka River catchment, southern Poland, were analyzed seasonally, in order to assess changes in their composition and structure, in relation to water quality. Two major groups of sites, differing in both morphological structure and taxonomical composition by cluster analysis, were identified within the catchment area. Wider and deeper sites, located along the Nysa Kłodzka River, were associated with the dominance of Chironomidae. Sites assigned along tributaries were characterized by a diversified structure of dominant taxa, including Oligochaeta, Hirudinea, Crustacea, Trichoptera, Ephemeroptera and Diptera. The performance of the modified procedure, named BMWP(PL) index, in accurately classifying 26 sites has been assessed through comparison with saprobic, diversity and biotic indices as well as chemical data. Due to diversified taxa richness and the presence or absence of specific indicator groups, values of the BMWP(PL) index varied from 27 to 93, and were correlated with the other biological indices and chemical variables. It has been stated that there is strong potential for application of the BMWP(PL) system in Poland, although some further testing is recommended.  相似文献   

12.
The use of multimetric indices as tools for assessing aquatic ecosystem health in most of the developing countries such as Togo is still lacking. To fill this gap, we developed a macroinvertebrates-based multimetric index for the Zio river basin of Togo. Forty-two sites were assessed for the development and the validation of the Multimetric Index of Zio River Basin (MMIZB). Thirty-nine candidate metrics belonging to four categories (composition metrics, functional feeding metrics, diversity metrics and tolerance measure metrics) were evaluated. After comprehensive multiple selection procedure, six core metrics were retained to provide the final MMIZB. The results showed that the MMIZB responded to a set of organic pollution (chemical oxygen demand, ammonium, total suspended solid) and hydromorphological alterations, which corresponded to a set of gradients of human pressures affecting the ecological integrity of Zio river basin water bodies (r = 0.78, p < 0.001). The final macroinvertebrate index well distinguished the reference sites and impaired sites of a validation data set (p < 0.001) and showed a significant relationship between water and habitat quality based on Prati’s index (r = 0.73, p < 0.001) and Multimetric Macroinvertebrates Index of Vietnam (MMI_Vietnam) (r = 0.88, p < 0.001). This work underlines the relevance of the MMIZB as an effective tool for biological monitoring and decision making in water management of Zio river basin.  相似文献   

13.
Key issues in the implementation of the Water Framework Directive are classification of lakes using biological quality parameters and type-specific reference conditions. This work is one of three studies considering different metrics of phytoplankton in the classification of ecological status. Phytoplankton was studied in a total of 55 Finnish boreal lakes, including 32 reference lakes. We tested the suitability of taxonomic composition and abundance of phytoplankton groups for biological classification. We also preliminarily determined the type-specific taxa for the studied lakes. The type-specific taxa for reference conditions are coincidently the indicator species/taxa for high ecological status. Interestingly, some taxa type-specific for impacted oligo-humic lakes proved to be the type-specific taxa for humic reference lakes. The pressure of human impact was observed not only as increase of biomass but also as changes in the species composition. The phytoplankton composition indicated the ecological status of impacted lakes moderately well. There was some variation in the indications given by different algal groups, probably due to the preliminary class boundaries used. However, the preliminary combination of indicative parameters to estimate the ecological status of the studied impacted lakes was in general in accordance with earlier classification of water quality in Finnish lakes.  相似文献   

14.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
In recent studies, several benthic biological indices were developed or used to assess the ecological quality status of marine environments. In the present study the seasonal variability of several univariate and multimetric indices was studied on a monthly scale (September 2000 until May 2002) in different areas of the North Sea such as the German Bight, the Oyster Ground and the Dogger Bank. The stations were chosen to reflect a gradient in the hydrographic regime, temperature and organic matter supply. The seasonal variability was highest for the univariate indices such as the Shannon–Wiener Index and the Hurlbert Index. Thus, due to sensitivity to recruitment the corresponding ecological status ranged from ‘good’ to ‘poor’ depending on the season. For the multimetric indices such as the AMBI or the BQI the seasonal variability and the corresponding ecological status were low. The results are discussed concerning possible consequences for ecological quality assessment especially related to the Water Framework Directive (WFD).  相似文献   

16.
A new assessment system for macrophytes and phytobenthos in German rivers meeting the requirements of the Water Framework Directive (WFD) of the European Community is described. Biocoenotic types based on biological, chemical and hydromorphological data from over 200 river sites covering the main ecoregions, hydromorphological stream types and degradation forms have been defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into three components: macrophytes, benthic diatoms and remaining phytobenthos. For macrophytes seven types including one subtype, for benthic diatoms 14 types including three subtypes and for the remaining phytobenthos five river types were identified. The benthic vegetation at reference condition was described for most of the river types. Degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For some of the described river types additional investigations are necessary before a classification system can be developed.  相似文献   

17.
In the twentieth century Polish Carpathian rivers were considerably modified by channelization and gravel mining, with significant detrimental effects to their ecological integrity, vertical stability of the streambeds and flood hazard to downstream river reaches. Restoration of the rivers is thus necessary to improve their ecological status and re‐establish geomorphic dynamic equilibrium conditions. Various approaches to defining hydromorphological reference conditions, proposed to date in river restoration literature, have serious deficiencies. In particular, environmental changes that took place in the catchments of Carpathian rivers during the twentieth century invalidate the historical state of the rivers as reference for their restoration. This is illustrated by a change from bar‐braided to island‐braided channel pattern that occurred in the past century in unmanaged sections of the Czarny Dunajec in response to a reduction in flow and sediment dynamics of the river. We indicate that reference conditions should be defined as those which exist or would exist under present environmental conditions in the catchment but without human influence on the channel, riparian zone and floodplain of the river which is to be restored. This assumption was tested through the evaluation of hydromorphological river quality of the Czarny Dunajec according to the European Standard EN‐14614. The evaluation confirmed a high‐status hydromorphological quality in an unmanaged channel section, which can thus be used as a reference for restoration of impacted river sections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Freshwater ecosystems in the Indo-Burma biodiversity hotspot face immediate threats through habitat loss and species extinction. Systems to monitor ecological status and trends in biodiversity are therefore crucially needed. Myanmar is part of Indo-Burma but with no past experience of biomonitoring in freshwaters. In this study, we aimed to assess the ecological and biodiversity status of a lowland river network in south-central Myanmar by identifying and quantifying pressures using macroinvertebrates as bioindicators. Novel data on water quality (nutrients, sediments and metals), hydromorphology (Morphological Quality Index; MQI), habitat quality (Litter-Siltation Index; LSI), land use, and macroinvertebrates were collected from 25 river sites. The dominant pressures on rivers were urban land use, inputs of untreated sewage, in-stream and riparian garbage littering, run-off from agricultural fields and plantations, as well as physical habitat degradation. Water chemistry data indicated inputs of sediments and nutrients to degraded streams, but no obvious metal pollution. The LSI and MQI indices indicated high perturbation in agricultural and urban areas, respectively. Ecological status was assessed using a first version of a modified Average Score per Taxon index (ASPT), while biodiversity was assessed by family richness within the orders Ephemeroptera, Plecoptera, Trichoptera, Coleoptera and Odonata (EPTCO), which was tested against the pressure gradient by principal component regressions. ASPT had high diagnostic capabilities (R2 = 0.68, p < 0.001) and showed that the index can be used to evaluate ecological water quality in this region. Biodiversity, expressed as family richness, also declined along the gradient (R2 = 0.59, p = 0.041), giving support to the fact that current land-use practices in this area are unsustainable.  相似文献   

20.
In recent times many benthic indices have been proposed to assess the ecological quality of marine waters worldwide. In this study we compared single metrics and multi-metric methods to assess coastal and transitional benthic status along human pressure gradients in five distinct environments across Europe: Varna bay and lake (Bulgaria), Lesina lagoon (Italy), Mondego estuary (Portugal), Basque coast (Spain) and Oslofjord (Norway). Hence, 13 single metrics (abundance, number of taxa, and several diversity and sensitivity indices) and eight of the most common indices used within the European Water Framework Directive (WFD) for benthic assessment were selected: index of size spectra (ISS), Benthic assessment tool (BAT), Norwegian quality index (NQI), Multivariate AMBI (M-AMBI), Benthic quality index (BQI), (Benthic ecosystem quality index (BEQI), Benthic index based on taxonomic sufficiency (BITS), and infaunal quality index (IQI). Within each system, sampling sites were ordered in an increasing pressure gradient according to a preliminary classification based on professional judgement. The different indices are largely consistent in their response to pressure gradient, except in some particular cases (i.e. BITS, in all cases, or ISS when a low number of individuals is present). Inconsistencies between indicator responses were most pronounced in transitional waters (i.e. IQI, BEQI), highlighting the difficulties of the generic application of indicators to all marine, estuarine and lagoonal environments. However, some of the single (i.e. ecological groups approach, diversity, richness) and multi-metric methods (i.e. BAT, M-AMBI, NQI) were able to detect such gradients both in transitional and coastal environments, being these multi-metric methods more consistent in the detection than single indices. This study highlights the importance of survey design and good reference conditions for some indicators. The agreement observed between different methodologies and their ability to detect quality trends across distinct environments constitutes a promising result for the implementation of the WFD’s monitoring plans. Moreover, these results have management implications, regarding the dangers of misclassification, uncertainty in the assessment, use of conflicting indices, and testing and validation of indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号