首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文采用了对窗区滑动的气温和降水的时间序列,构造均生函数外延矩阵。对外延矩阵进行主分量分析,建立了以主分量作自变量的气温或降水的长期预测模型。实例分析表明,该模型应用于气温长期预测精度较高,用于降水趋势预测亦是可行的。  相似文献   

2.
根据四川地区十几个气象站日本世纪40年代以来的温度、降水观测记录,用数理统计方法分析了四川地区气温、降水的时间的演变规律及空间分布特征。并通过两种气候预测方案(基于均生函数的正交筛选方案和基于均生函数的主成分方案)建模,在对方历史资料拟合的基础上,对四川未来气温和降水趋势做出了长期预测。  相似文献   

3.
利用时间序列经适当数学变换后生成的均生函数,建立了一个可用于长期气候变化趋势预测的数学模型,并将此模型用于四川地区年平均气温及年降水总量的历史拟合及预测。结果表明:模型对较长时间序列的多步预测有较好的效果。  相似文献   

4.
对白银市4个代表站1957~1996年6~8月的降水量场进行经验正交函数(EOF)分解,得到方差贡献最大的第一特征向量,对第一特征向量的主分量建立均生函数模型并外推5年预报,用预报出的时间系数乘以相应的特征向量得到6~8月降水量场的预报值。  相似文献   

5.
为海洋、江河渔获量的短期和长期预测提供一种预测精度较好的预测方法,将灰色GM(1,1)预测和马尔柯夫概率矩阵预测两者结合起来,通过它们的优点互补,使灰色马尔柯夫预测模型对渔获量的预测结果更科学、更精确。并用灰色马尔柯夫预测模型,预测山东省黄姑鱼的年渔获量。结果是令人满意的。  相似文献   

6.
针对观测数据时间序列,综合组合预测与投影寻踪学习网络的优点,提出一种新的预测模型.即采用静态预测法提取多组趋势项部分,自回归模型提取周期项部分,将它们都作为投影寻踪学习网络的输入部分,然后利用PPLN具有逼近复杂非线性函数的能力,通过网络学习与训练解决传统方法定权困难的问题.沉降预测的实验结果表明,与传统的曲线拟合法、变权重组合预测法相比较,该预测模型精度更高、具有实用性.  相似文献   

7.
基于灰色关联算法确定与地表沉降有直接重要关联的主要影响因子,构建高斯核函数和多项式核函数的加权核函数,利用遗传算法优化模型参数,建立相关向量机地表沉降预测模型。实验结果表明,灰色关联算法能定量地反映系统影响因子与地表沉降变化的关联程度,有效处理不是完全明确的灰色系统信息;加权核函数的合理组合可较好地通过低维空间线性不可分映射变换到高维特征空间线性可分;遗传算法具有计算过程简单和自适应迭代寻优特点;相关向量机模型可极大地减少核函数的计算量,计算过程和结果均具有概率解释。该模型预测结果的多项精度指标值均优于BP神经网络和GR-SVM方法。  相似文献   

8.
建立一种考虑了影响系数的优势周期均生函数主分量时序须测模型。该方法对时间序列的均生函数进行主分量分析,用主分量作自变量。根据变量后期值受前期值的影响引入影响系数K(t),并应用方差分析法确定K(t)的优势周期,进而求出预测时刻的K(N+1),由变量的前期值和K(N+1)就能计写出变量的预测值(N+1),该方法用于四川省20个地区丰季和全年降水预测,并将试报结果与均生函数建模法试报结果进行了比较,效果尚好。  相似文献   

9.
滑坡时间预测预报目前主要以滑坡最终破坏的时间为目标函数,但对于变形特征为阶跃型的滑坡却难以准确地预测其
破坏时间。为此,提出以位移作为此类滑坡时间预报的目标函数。将滑坡位移分解为蠕变位移和波动位移,采用二次移动平均法
分别提取,然后采用多项式拟合和灰色GM(1,1)模型分别对蠕变位移和波动位移进行预测,最后将两部分预测位移相加得到滑坡
预测的总位移。以典型阶跃型位移特征滑坡———三峡库区八字门滑坡为例,运用其位移监测数据进行验证,并对多模型预测结果
进行对比分析,结果表明,该位移预测模型预测精度良好,能较好地预测阶跃型位移特征滑坡位移。   相似文献   

10.
将变形监测灰色预测模型分为传统GM(1,1)模型及其改进模型、非齐次灰色模型、GM(1,1)幂模型及其改进模型3种类型,以Origin拟合函数Exp2PModl、Exponential和SRichards2作为3类灰色预测模型的替代方法,基于理论研究和实例验证对比分析3类灰色预测模型及其替代方法。结果表明,3类灰色预测模型在拟合函数、有无极限值、适合等时距或非等时距建模和适用范围等方面存在显著差异,需要根据变形监测数据特征选择合适的灰色预测模型类别;与3类灰色预测模型相比,Origin拟合函数在参数求解和建模数据要求上更具优势,而且可以得到相当甚至更高的拟合或预测精度,除需要编程实现的特殊优化目标外,完全可以代替灰色预测模型用于变形监测。  相似文献   

11.
The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.  相似文献   

12.
The northeastern China is a sensitive region of climate change, whose detailed trend of climate changes is highly interesting. In this study, this kind of variation trend was analyzed. Potential evapotranspiration (PE) and moisture index (MI) were modeled by using Thornthwaite scheme based on the observation data of 1961-2004 from 94 meteorological stations. To describe the climate fluctuation in the northeastern China in 1961-2004, the linear regression method was used to analyze the variation trends of mean annual temperature, mean annual precipitation, PE and MI. Mann-Kendall method was used to test the significant difference. The results show a general increasing tendency in mean annual temperature, mean annual precipitation, PE and MI. However increasing tendency was more significant in mean annual temperature and PE than in mean annual precipitation and MI. Analysis of seasonal climate variation indicates that there showed positive trends in winter and in spring, while the positive trend was more significant in winter than in spring. Furthermore, the relations between climate changes and geographical factors were analyzed, the results show that both climate factors and their interannual variability were correlated to latitude, longitude and altitude, suggesting that latitude is the most climate factor affecting climate changes, followed by altitude and longitude.  相似文献   

13.
The alpine wetlands in QTP(Qinghai-Tibetan Plateau) have been profoundly impacted along with global climate changes. We employ satellite datasets and climate data to explore the relationships between alpine wetlands and climate changes based on remote sensing data. Results show that: 1) the wetland NDVI(Normalized Difference Vegetation Index) and GPP(Gross Primary Production) were more sensitive to air temperature than to precipitation rate. The wetland ET(evapotranspiration) across alpine wetlands was greatly correlated with precipitation rate. 2) Alpine wetlands responses to climate changes varied spatially and temporally due to different geographic environments, variety of wetland formation and human disturbances. 3) The vegetation responses of the Zoige wetland was the most noticeable and related to the temperature, while the GPP and NDVI of the Qiangtang Plateau and Gyaring-Ngoring Lake were significantly correlated with both temperature and precipitation. 4) ET in the Zoige wetland showed a significantly positive trend, while ET in Maidika wetland and the Qiangtang plateau showed a negative trend, implying wetland degradation in those two wetland regions. The complexities of the impacts of climate changes on alpine wetlands indicate the necessity of further study to understand and conserve alpine wetland ecosystems.  相似文献   

14.
Increases in climate variability, including extremes, may be expected with anthropogenic climate change, but some evidence is contrary. The issue is important because the consequences of variability can be critical for ecosystems. It has long been known and often rehearsed that ecological consequences of increased variability may be greater than those that result from expected changes in mean temperature and precipitation. Tree rings have been useful indicators of ecological response to climate change and used as proxies for climate variability; work in the Rocky Mountains, USA, has been particularly informative. Chronologies from two high elevation species ranging over 2500 km were analyzed for changes in variance through time. These spatially extensive and disaggregated tree ring records do not show a consistent pattern of change in variance over the past 500 or 100 years; heteroscedasticity has recently been greater. A lack of consistent response in growth over a period encompassing changes in mean climate indicates that mountain environments, with inconsistent trends in temperature and precipitation, may be too complex to act as sentinels.  相似文献   

15.
Identifying the impacts of climate change is important for conservation of ecosystems under climate change, particularly in mountain regions. Holdridge life zone system and K?ppen classification provide two effective methods to assess impacts of climate change on ecosystems, as typical climate-vegetation models. Meanwhile, these previous studies are insufficient to assess the complex terrain as well as there are some uncertainties in results while using the given methods. Analysis of the impacts of the prevailing climate conditions in an area on shifts of ecosystems may reduce uncertainties in projecting climate change. In this study, we used different models to depict changes in ecosystems at 1 km × 1 km resolution in Sichuan Province, China during 1961–2010. The results indicate that changes in climate data during the past 50 years were sufficient to cause shifts in the spatial distribution of ecosystems. The trend of shift was from low temperature ecosystems to high temperature ecosystems. Compared with K?ppen classification, the Holdridge system has better adaptation to assess the impacts of climate change on ecosystems in low elevation(0–1000 m). Moreover, we found that changed areas in ecosystems were easily affected by climate change than unchanged areas by calculating current climate condition.  相似文献   

16.
随机森林算法在全球干旱评估中的应用   总被引:2,自引:0,他引:2  
干旱是发生频率最高,造成社会、经济损失和生态破坏最严重、最广泛的自然灾害之一,因此对干旱进行可靠、有效的评估十分重要。本文以月平均降水、月平均温度、月最高温度、月最低温度、土壤湿度、蒸散发、NDVI、叶绿素荧光等作为解释变量,以基于SPI的干旱等级作为目标变量,采用随机森林算法,以2007—2012年的数据作为训练数据,以2013—2014年的数据作为预测数据,对全球11个气候区分别建立干旱等级评估模型。研究结论如下:SPI的时间尺度影响模型精度,在基于SPI1、SPI3、SPI6和SPI12划分的干旱等级的评估模型中,以基于SPI1的干旱等级为目标变量的模型的预测精度(60%~75%)较高,且模型能够捕捉到EM-DAT旱灾记录次数的90.91%、月份的78.47%,表明该模型对实际干旱事件具有良好的评估性能;干旱等级划分标准对模型的预测性能影响较小,可根据需求选择标准I(干旱/非干旱)或标准Ⅱ(重旱/非重旱)进行干旱评估;解释变量的相对重要性与SPI的时间尺度和气候差异等因素有关。降水对基于SPI1的干旱等级的重要性最大,随着SPI时间尺度的增加,降水的重要性逐渐减小,温度、土壤湿度、NDVI和ET的重要性逐渐增大。降水以外的其他变量在不同气候区的重要性不同。在热带气候区、亚寒带气候区和苔原气候区,温度或蒸散发的影响较大;在干燥气候区,土壤湿度的影响较大;在温带气候区,仍以降水的相对重要性最大;在湿润大陆性气候区,植被对干旱的影响较大。  相似文献   

17.
使用区域气候模式RegCM3,进行植被变化对中国区域气候影响的数值模拟试验。模拟结果表明:植被退化使气候变得更加恶劣,退化区降水减少,大气变得干燥,气温升高;而植被增加使得降水增加,大气湿度增大,气温降低。地表植被的变化可通过地气问相互作用激发出大气偏差风环流,从而影响大范围气候,乃至全球气候。  相似文献   

18.
植被变化引起我国气候变化的数值模拟   总被引:1,自引:0,他引:1  
使用区域气候模式RegCM3,进行植被变化对中国区域气候影响的数值模拟试验。模拟结果表明:植被退化使气候变得更加恶劣,退化区降水减少,大气变得干燥,气温升高;而植被增加使得降水增加,大气湿度增大,气温降低。地表植被的变化可通过地气问相互作用激发出大气偏差风环流,从而影响大范围气候,乃至全球气候。  相似文献   

19.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

20.
Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation in the Polish Carpathians. This study consists of climatological analyses for the historical period 1851-2010 and future projections for 2021-2100. The results confirm that there has been significant warming of the area and that this warming has been particularly pronounced over the last few decades and will continue in the oncoming years. Climate change is most evident in the foothills; however, these are the highest summits which have experienced the most intensive increases in temperature during the recent period. Precipitation does not demonstrate any substantial trend and has high year-to-year variability. The distribution of the annual temperature contour lines modelled for selected periods provides evidence of the upward shift of vertical climate zones in the Polish Carpathians, which reach approximately 350 meters, on average, what indicates further ecological consequences as ecosystems expand or become extinct and when there are changes in the hydrological cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号