首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67?hr and $|\dot{P}| \leq1.6 \times10^{-9}\,{\rm s\,s^{-1}}$ . It is associated with the supernova remnant RCW?103 and is widely believed to be a ~2000?yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ~3000?km and the mass-accretion rate $\sim 10^{14}\,{\rm g\,s^{-1}}$ . This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ~1012?G and that a presence of $\gtrsim10^{-7}\,{\rm M_{\odot}}$ magnetic slab would be sufficient to explain the origin and current state of the pulsar.  相似文献   

2.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

3.
The Be X-ray pulsar SMC X-3 underwent an extra long and ultraluminous giant outburst from 2016 August to 2017 March. The peak X-ray luminosity is up to \(\sim10^{39}~\mbox{erg/s}\), suggesting a mildly super-Eddington accretion onto the strongly magnetized neutron star. It therefore bridges the gap between the Galactic Be/X-ray binaries (\(L_{\mathrm{X}}^{\mathrm{peak}} \leq10^{38}~\mbox{erg/s}\)) and the ultraluminous X-ray pulsars (\(L_{\mathrm{X}}^{\mathrm{peak}} \geq10^{40}~\mbox{erg/s}\)) found in nearby galaxies. A number of observations were carried out to observe the outburst. In this paper, we perform a comprehensive phase-resolved analysis on the high quality data obtained with the Nustar and XMM-Newton, which were observed at a high and intermediate luminosity levels. In order to get a better understanding on the evolution of the whole extreme burst, we take the Swift results at the low luminosity state into account as well. At the early stage of outburst, the source shows a double-peak pulse profile, the second main peak approaches the first one and merges into the single peak at the low luminosity. The second main peak vanishes beyond 20 keV, and its radiation becomes much softer than that of the first main peak. The line widths of fluorescent iron line vary dramatically with phases, indicating a complicated geometry of accretion flows. In contrast to the case at low luminosity, the pulse fraction increases with the photon energy. The significant small pulse fraction detected below 1 keV can be interpreted as the existence of an additional thermal component located at far away from the central neutron star.  相似文献   

4.
EinsteinA-coefficients for transitions inSii, calculated with the atomic structure package CIV3, are used to derive the electron density sensitive emission line ratio
  相似文献   

5.
The neutrino-pair radiation by electrons in a non-quantizing magnetic field B is investigated. For a relativistic degenerate electron gas the emissivity of this process is mainly given by \documentclass{article}\pagestyle{empty}\begin{document}$ \varepsilon _r = 5 \times 10^{15} (pF/mc)^{4/3} \,B_{13}^{2/3} T_y^{12/8} \,{\rm erg} \times {\rm cm}^{ - 3} \times {\rm sec}^{- 1} $\end{document} where pF is the electron Fermi momentum. Under typical neutron star conditions at B ∼ 1013G neutrino synchrotron radiation appears to be one of the most effective mechanisms of neutrino energy loss in the envelopes of neutron stars; this mechanism may also compete with other known neutrino production mechanisms in the neutron star cores if pion condensate or quark matter is absent.  相似文献   

6.
Thorne–?ytkow objects (T?Os), originally proposed by Thorne and ?ytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of T?Os in close binary stars. The Galactic birth rate of T?Os is about \(1.5\times 10^{-4}~\hbox {yr}^{-1}\). Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of T?Os via the above different progenitors are \(1.7\times 10^{-5}\), \(1.2\times 10^{-4}\), \(0.7\times 10^{-5}\), \(0.6\times 10^{-5}~\hbox {yr}^{-1}\), respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.  相似文献   

7.
We analyze ultraviolet spectra of DF Tau, a binary system whose primary component is a classical T Tauri star. The spectra were obtained from the Hubble Space Telescope and the IUE satellite. The stellar emission in the wavelength range covered is shown to originate in an accretion shock wave. The gas infall velocity is ~250 km s?1. The accreted-gas density is typically N 0≤1011 cm?3, but it can occasionally be higher by one and a half orders of magnitude. The continuum intensity near λ=1900 Å was found to be virtually constant for such a significant change in N 0. The star’s photometric variability is probably attributable to variations in accreted-gas density and velocity, as well as to variations in the area of a hot spot on the stellar surface and in its orientation relative to the observer. The mean accretion rate is $\dot M \sim 3 \times 10^{ - 9} M_ \odot yr^{ - 1}$ . The interstellar extinction for DF Tau is $A_V \simeq 0\mathop .\limits^m 5$ , the stellar radius is ≤2R , and the luminosity of the primary component is most likely no higher than 0.3 L . We argue that the distance to DF Tau is about 70 pc. Upper limits are placed on the primary’s coronal emission measure: EM(T=107 K)<3×1054 cm?3 and EM(T=1.3×106 K)<3×1055 cm?3. Absorption lines originating in the stellar wind were detected in the star’s spectrum. Molecular hydrogen lines have essentially the same radial velocity as the star, but their full width at half maximum is FWHM ?50 km s?1. We failed to explain why the intensity ratio of the C IV λ1550 doublet components exceeds 2.  相似文献   

8.
We analyzed 186 binary pulsars (BPSRs) in the magnetic field versus spin period (B-P) diagram, where their relations to the millisecond pulsars (MSPs) can be clearly shown. Generally, both BPSRs and MSPs are believed to be recycled and spun-up in binary accreting phases, and evolved below the spin-up line setting by the Eddington accretion rate ( $\dot{M}{\simeq}10^{18}~\mbox{g/s}$ ). It is noticed that most BPSRs are distributed around the spin-up line with mass accretion rate $\dot{M}=10^{16}~\mbox{g/s}$ and almost all MSP samples lie above the spin-up line with $\dot{M}\sim10^{15}~\mbox{g/s}$ . Thus, we calculate that a minimum accretion rate ( $\dot{M}\sim10^{15}~\mbox{g/s}$ ) is required for the MSP formation, and physical reasons for this are proposed. In the B-P diagram, the positions of BPSRs and their relations to the binary parameters, such as the companion mass, orbital period and eccentricity, are illustrated and discussed. In addition, for the seven BPSRs located above the limit spin-up line, possible causes are suggested.  相似文献   

9.
A possible semi-annual variation of the Newtonian constant of gravitationG is established. For the aphelion and perihelion points of the Earth's orbit we find, respectively,
  相似文献   

10.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

11.
New theoretical electron-density-sensitive Fe xii emission line ratios $$R_1 = I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} )/I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 D_{5/2} )$$ and $$R_2 = I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 {}^2D_{5/2} )/I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^2 P_{3/2} )$$ are derived using R-matrix electron impact excitation rate calculations. We have identified the Fexii \(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} ,{\text{ }}3s^2 3p^3 {}^2P_{3/2} - 3s^3 3p^4 {}^2D_{5/2} ,{\text{ }}3s^2 3p^3 S_{3/2} - 3s^2 3p^3 P_{3/2} \) and \(3s^2 3p^3 {}^4S_{3/2} - 3s^2 3p^3 {}^2P_{1/2}\) transitions in an active region spectrum obtained with the Harvard S-055 spectrometer on board Skylab at wavelengths of 364.0, 382.8, 1241.7, and 1349.4 Å, respectively. Electron densities determined from the observed values of R 1 (log N e ? 11.0) and R 2(log N e ? 11.4) are significantly larger than the typical active region measurements, but are similar to those derived from some active region spectra observed with the Skylab 2082A instrument, which provides observational support for the atomic data adopted in the line ratio calculations, and also for the identification of the Fe xii transitions in the S-055 spectrum. However the observed value of R 3 = I(1349.4 Å)/I(1241.7 Å) is approximately a factor of two larger than one would expect from theory which, considering that the 1349.4 Å line lies at the edge of the S-055 wavelength coverage, may reflect errors in the instrument efficiency curve. Another possibility is that the 1349.4 Å transition is blended, probably with Si ii 1350.1 Å.  相似文献   

12.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

13.
We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (~166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3–150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\({\dot{m}}_{d}\)), sub-Keplerian accretion rate (\({\dot{m}}_{h}\)), shock location (\(r_{s}\)) and black hole mass (\(M_{\mathit{bh}}\)) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as \(L^{\mathrm{obs}}_{\mathrm{jet}} \sim3\mbox{--}6 \times10^{37}~\mbox{erg}\,\mbox{s}^{-1}\) during one of the observed radio flares which indicates that jet power corresponds to 8–16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (~14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2–7.9 \(M_{\odot}\) with 90% confidence.  相似文献   

14.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

15.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

16.
Pulsar emission     
  相似文献   

17.
We recently found that the halo of the Milky Way contains a large reservoir of warm-hot gas that accounts for large fraction of the missing baryons from the Galaxy. The average physical properties of this circumgalactic medium (CGM) are determined by combining average absorption and emission measurements along several extragalactic sightlines. However, there is a wide distribution of both, the halo emission measure and the O?vii column density, suggesting that the Galactic warm-hot gaseous halo is anisotropic. We present Suzaku observations of fields close to two sightlines along which we have precise O?vii absorption measurements with Chandra. The column densities along these two sightlines are similar within errors, but we find that the emission measures are different: 0.0025±0.0006 cm?6?pc near the Mrk 421 direction and 0.0042±0.0008 cm?6?pc close to the PKS 2155-304 sightline. Therefore the densities and pathlengths in the two directions must be different, providing a suggestive evidence that the warm-hot gas in the CGM of the Milky Way is not distributed uniformly. However, the formal errors on derived parameters are too large to make such a claim. In the Mrk 421 direction we derive the density of \(1.6^{+2.6}_{-0.8} \times 10^{-4}~\mbox{cm}^{-3}\) and pathlength of \(334^{+685}_{-274}~\mbox{kpc}\) . In the PKS 2155-304 direction we measure the gas density of \(3.6^{+4.5}_{-1.8} \times10^{-4}~\mbox{cm}^{-3}\) and path-length of \(109^{+200}_{-82}~\mbox{kpc}\) . Thus the density and pathlength along these sightlines are consistent with each other within errors. The average density and pathlength of the two sightlines are similar to the global averages, so the halo mass is still huge, over 10 billion solar masses. With more such studies, we will be able to better characterize the CGM anisotropy and measure its mass more accurately. We can then compare the observational results with theoretical models and investigate if/how the CGM structure is related to the larger scale environment of the Milky Way. We also show that the Galactic disk makes insignificant contribution to the observed O?vii absorption; a similar conclusion was also reached by Henley and Shelton (2013) about the emission measure. We further argue that any density inhomogeneity in the warm-hot gas, be it from clumping, from the disk, or from a non-constant density gradient, would strengthen our result in that the Galactic halo path-length and the mass would become larger than what we estimate here. As such, our results are conservative and robust.  相似文献   

18.
Diffuse cosmic background and atmospheric gamma-radiation in the range 28 keV-4.1 MeV were studied with a scintillation spectrometer on board of the Kosmos 461 satellite. Separation of the cosmic and atmospheric components was made possible through a reliable determination of the geomagnetic dependences of albedo gamma-radiation: The spectrum of diffuse background in the energy range covered cannot be fitted with a common law. At energies below 400 keV the spectrum follows a power-law $$I = (5.6 \pm 0.5) \times 10^{ - 3} E^{ - (2.80 \pm 0.05)} cm^{ - 2} s^{ - 1} sr^{ - 1} MeV^{ - 1} .$$ Starting from 400 keV, this power-law breaks down; the spectrum revealing a clearly pronounced shoulder. Extrapolation of the power-law spectrum to higher energies shows that the gamma-ray component responsible for the change in the shape of the spectrum is quite strong, becoming predominant in the diffuse background in the range 1–100 MeV. The intensity of excess radiation is maximum in the region of 700–800 keV reaching ~1.8×10?2 cm?2s?1sr?1 MeV?1. The shape of the high energy component spectrum of the diffuse background constructed using the data of Kosmos 461 and SAS-2 is in agreement with the hypotheses of the cosmological origin of the radiation.  相似文献   

19.
We consider the Alfvén-Arrhenius fall-down mechanism and describe an approximate model for the infall, capture and distribution of dust particles on a given magnetic field line and their possible neutralization at the ‘2’/3 points, the points at which the field aligned compnents of the gravitational and centrifugal forces are equal and opposite. We find that a small fraction (<10%) of an incoming particle distribution will actually contribute to the above ‘2’/3 fall-down process. We also show that if at the 2/3 points, the ratio of dust to plasma density is $$\frac{{n_D \left( {\tfrac{2}{3}} \right)}}{{n_p \left( {\tfrac{2}{3}} \right)}} > \frac{{10^{ - 3} }}{{r_{g_\mu } T_{eV} }}$$ . (r gμ=radius of a grain in microns,T=plasma temperature in eV), then the dust particles will lose their charge, decouple from the field line and follow Keplerian orbits in accordance with the Alfvén-Arrhenius mechanism. We then determine the limits on the plasma parameters in order that rotation of a quasi-neutral plasma in thermal equilibrium be possible in the gravitational and dipole field of a rotating central body. The constraints imposed by the above conditions are rather weak, and the plasma parameters can have a wide range of values. For a plasma corotating with an angular velocity Ω~10?4s?1, we show that the plasma temperature and density must satisfy $$10^{ - 1}<< T_{(eV)}<< 10^2 ,10T_{eV}^2<< n^p \left( {cm^3 } \right)<< 10^6 $$ .  相似文献   

20.
Two flights from Alice Springs, Australia, were achieved in November 1977 and November 1978 with a plastic scintillator -burst detector, effective area 6.3 m2, thickness 5 cm, energy response in the range 50 keV to 2 MeV. In 33 hr of good, high altitude data, two bursts were detected, yielding a rate corrected to an isotropic flux of at a size of 8.5×10–9 erg cm–2. One event, seen at 22.14 on 15 Nov 1978, was confirmed by spacecraft measurements. The second, too small to be detected by spacecraft, arrived from 0 hr RA, –13.2° Decl. ±12° and possibly comes from a confirmed -burst source location. A galactic origin with a source distribution originating from a relatively thick disk, is favoured by these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号