首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) has been studied in oil columns from the Liaohe basin, NE China, characterized by varied degrees of biodegradation. The Es3 oil column has undergone light to moderate biodegradation – ranging from levels 2 to 5 on the [Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ, p. 363] scale (abbreviated as ‘PM level’) – while the shallower Es1 column has undergone more severe biodegradation, ranging from PM level 5 to 8. Both columns show excellent vertical biodegradation gradients, with degree of biodegradation increasing with increasing depth toward the oil–water contact (OWC). The compositional gradients in the oil columns imply mass transport control on degradation rates, with degradation occurring primarily at the OWC. The diffusion of hydrocarbons to the OWC zone will be the ultimate control on the maximum degradation rate. The chemical composition and physical properties of the reservoired oils, and the ‘degradation sequence’ of chemical components are determined by mixing of fresh oil with biodegraded oil.The PAH concentrations and molecular distributions in the reservoired oils from these biodegraded columns show systematic changes with increasing degree of biodegradation. The C3+-alkylbenzenes are the first compounds to be depleted in the aromatic fraction. Concentrations of the C0–5-alkylnaphthalenes and the C0–3-alkylphenanthrenes decrease markedly during PM levels 3–5, while significant isomer variations occur at more advanced stages of biodegradation (>PM level 4).The degree of alkylation is a critical factor controlling the rate of biodegradation; in most cases the rate decreases with increasing number of alkyl substituents. However, we have observed that C3-naphthalenes concentrations decrease faster than those of C2-naphthalenes, and methylphenanthrenes concentrations decrease faster than that of phenanthrene. Demethylation of a substituted compound is inferred as a possible reaction in the biodegradation process.Differential degradation of specific alkylated isomers was observed in our sample set. The relative susceptibility of the individual dimethylnaphthalene, trimethylnaphthalene, tetramethylnaphthalene, pentamethylnaphthalene, methylphenanthrene, dimethylphenanthrene and trimethylphenanthrene isomers to biodegradation was determined. The C20 and C21 short side-chained triaromatic steroid hydrocarbons are degraded more readily than their C26–28 long side-chained counterparts. The C21–22-monoaromatic steroid hydrocarbons (MAS) appear to be more resistant to biodegradation than the C27–29-MAS.Interestingly, the most thermally stable PAH isomers are more susceptible to biodegradation than less thermally stable isomers, suggesting that selectivity during biodegradation is not solely controlled by thermodynamic stability and that susceptibility to biodegradation may be related to stereochemical structure. Many commonly used aromatic hydrocarbon maturity parameters are no longer valid after biodegradation to PM level 4 although some ratios change later than others. The distribution of PAHs coupled with knowledge of their biodegradation characteristics constitutes a useful probe for the study of biodegradation processes and can provide insight into the mechanisms of biodegradation of reservoired oil.  相似文献   

3.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

4.
在对东疆地区(包括吐哈盆地和三塘湖盆地)原油饱和烃生物标志物地球化学特征研究基础上,对原油芳烃馏分进行全面分析及地球化学特征研究;通过深入剖析原油芳烃系列组成,明确东疆地区原油类型划分,根据烷基奈、"三芴"系列及卡达烯、惹烯等化合物的分布特征,进一步揭示三塘湖盆地石炭系原油母源沉积水体盐度低、还原性弱,成油母质中包含丰...  相似文献   

5.
The thiourea adduct, thiourea non-adduct and aromatic fractions from a series of Alberta oil sand bitumens have been subjected to field ionization mass spectrometric analyses. Field ionization mass spectra feature little fragmentation and the molecular weight distributions of compounds in the fractions are readily obtained. Using this method, the various acyclic and cyclic saturated hydrocarbons and the hydrocarbon and thiophenic aromatic materials may be distinguished by compound type and number of carbon atoms. The effect of biodegradation on crude oils is illustrated in the results from the series of oil sand bitumens and their asphaltene pyrolysis products. Field ionization mass spectrometry is potentially an important new analytical tool in organic geochemistry.  相似文献   

6.
芳烃作为原油和烃源岩中可溶烃的一个重要组分,能提供烃源岩沉积环境、有机质来源、热演化程度和油源对比等多方面信息,并且其比饱和烃具有更强的抗生物降解作用的能力,因此广泛用于生物降解油的相关研究。生物降解油广泛分布于中国青藏高原羌塘盆地,为了有效开展羌塘盆地油源对比研究工作,本文对隆鄂尼地区油苗开展了系统的芳烃有机地球化学特征研究,样品中检测出的15类化合物系列中菲系列含量极高,其次为三芴系列,萘系列含量较低,但同样检测出一定量的源于陆源高等植物母质的化合物,如卡达烯、惹烯和海松烯等,这表明羌塘盆地生油母质以海相低等水生生物为主,同时有一定量陆源高等植物输入。芳烃成熟度参数研究表明,甲基萘指数由于受到混源影响而不能单独用于成熟度评价,而甲基菲指数和甲基二苯并噻吩指数是羌塘盆地原油成熟度研究的有效指标,综合各类成熟度指标研究表明,羌塘盆地原油属于成熟油。  相似文献   

7.
The monoaromatic and total aromatic hydrocarbon fractions of two pairs of undegraded and moderately biodegraded crude oils from the Santa Maria basin (California) and the Vienna basin (Austria), all dominated by unresolved complex mixtures, were studied regarding their composition and toxicity towards the feeding rate of the marine mussel Mytilus edulis. Total aromatic and monoaromatic hydrocarbon fractions from sulphur-rich Monterey Formation crude oils were slightly more toxic than the fractions isolated from sulphur-lean Vienna basin oils. The ecotoxicity tests did not show any significant differences in toxicity of aromatic compounds from undegraded or in-reservoir biodegraded crude oils from the same oilfield although some differences in composition were observed. Organic sulphur compounds are suspected to cause the slightly higher toxicity of the aromatic hydrocarbon fractions from the Monterey oils.  相似文献   

8.
Biodegradation, one of the most important weathering processes, alters the composition of spilled oil, making it difficult to identify the source of the release and to monitor its fate in the environment. A laboratory experiment was conducted to simulate oil spill weathering process of microbial degradation to investigate compositional changes in a range of source- and weathering-dependent molecular parameters in oil residues, and the conventional diagnostic ratios for oil spill identification were also evaluated. The conventional diagnostic ratios of n-alkane displayed obvious changes after biodegradation, especially for Pr/n-C17 and Ph/n-C18 with relative standard deviation more than 118.84 %, which suggests they are invalid for oil source identification of the middle-serious spill. Many polycyclic aromatic hydrocarbons (PAHs) are more resistant to biodegradation process than their saturated hydrocarbon counterparts, thus making PAHs to be one of the most valuable fingerprinting classes of hydrocarbons for oil identification. Biomarker ratios of hopanes and steranes were also useful for source identification even after moderate biodegradation, and the diagnostic ratios from them could be used in tracking origin and sources of hydrocarbon pollution. Finally, the carbon isotopic type curve may provide another diagnostic means for correlation and differentiation of spilled oils, and be particularly valuable for lighter refined products or severely biodegraded oils, the source of which may be difficult to identify by routine biomarker techniques.  相似文献   

9.
山东东营凹陷八面河油田稠油成因分析   总被引:8,自引:2,他引:6  
东营凹陷八面河地区原油物性呈规律性的变化,偏离生油中心的构造高部位主要分布稠油,靠近生油中心的构造低部位主要分布正常油。对原油族组成与化学成分的分析表明,八面河油田稠油具有低饱芳比、饱和烃含量低、链烷烃与低分子量萘、菲等轻质馏分严重缺失等轻度-中等降解油特征,邻区草桥油田稠油含较为完整的生物降解标志物--25-降藿烷系列,系严重降解油,反映该区稠油的形成与次生变化有关。同区具有相同或相似油气成因的沙子岭原油的成熟度(C29甾烷ααα20S/(S+R)值为0.24~0.25)低于八面河的(C29甾烷ααα20S/(S+R)值为0.31~0.44),为典型未熟-低熟油。沙子岭的轻度或未降解油同样表现为正常油,反映八面河地区低温成烃与稠油无必然的联系,进一步验证八面河稠油主系次生成因。处于构造高部位的油藏由于埋深浅、保存条件差,导致水洗、生物降解等次生变化相对较强,最终形成稠油。  相似文献   

10.
生物降解作用对烷基萘异构体分布的影响及其控制因素   总被引:1,自引:0,他引:1  
在受到溢油污染的海滩上采集不同时间序列的石油样品,对芳烃组分烷基萘中的三甲基萘和四甲基萘各异构体的生物降解过程响应进行了详细分析。研究揭示,三甲基萘比四甲基萘更易被生物降解,其中1,2,7-三甲基萘、2,3,6-三甲基萘、2,3,6,7-四甲基萘、1,2,3,7-四甲基萘和1,3,5,7-四甲基萘等异构体具有相对较高的生物降解效率,与最近 Ostojié等利用理论模型计算所给出的降解序列十分一致,进一步证实了烷基萘在表生环境中的降解主要受控于异构体萘环上取代基的数量和位置。研究结果对于表生环境中萘系物类多环芳烃污染的生物修复评价具有重要指导意义。  相似文献   

11.
Physical simulation experiment on oil displacement is an important approach to understand the mechanism and efficiency of displacement. Physical simulation experiments on water-flooding and chemical flooding in real cores with different lithologies and physical properties, reservoir Rock-Eval, TLC-FID, GC of saturated hydrocarbon fractions and GC-MS of saturated and aromatic hydrocarbon fractions were performed to investigate differences in the geochemistry of residual oils in the cores processed by water-flooding and chemical flooding. After fine sandstone was displaced with the two methods, the preferable replacement efficiency was displayed by the chemical constitutions of residual oils. As to glutenite, water-flooding is less effective, while chemical flooding has excellent performance according to changes in chemical compounds in oils. The results showed that the geochemical characteristics of the reservoir oils and lithology and physical properties of reservoir bed need to be considered in selecting replacement methods. In addition, the geochemical parameters for residual oils slightly changed during water-flooding and chemical flooding, which suggested the water-flooding and chemical flooding could not affect the application of these parameters in geochemistry.  相似文献   

12.
The aliphatic hydrocarbon fractions of sixty oils from the San Jorges Basin, Argentina have been analysed by computerized-gas chromatography-mass spectrometry. The initial aim of this study was the correlation of the oils using sterane and triterpane biomarkers. The oils could be divided into four groups which were distinguished by the relative proportions of regular to demethylated hopanes. Although it has been previously suggested that the demethylated hopanes found in oils could have resulted from biotransformation of the oils in the reservoir, in this basin the possibility that these compounds originated directly from the source beds cannot be entirely eliminated since the oils do not appear to be extensively biodegraded on the basis of their aliphatic hydrocarbon distributions. An alternative theory for the hydrocarbon distributions observed in these oils, is initially biodegradation of the oils in the reservoir followed by addition of non-degraded oil to produce a mixture of degraded and non-degraded oil.  相似文献   

13.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

14.
A suite of 18 oils from the Barrow Island oilfield, Australia, and a non-biodegraded reference oil have been analysed compositionally in order to detail the effect of minor to moderate biodegradation on C5 to C9 hydrocarbons. Carbon isotopic data for individual low molecular weight hydrocarbons were also obtained for six of the oils. The Barrow Island oils came from different production wells, reservoir horizons, and compartments, but have a common source (the Upper Jurassic Dingo Claystone Formation), with some organo-facies differences. Hydrocarbon ratios based on hopanes, steranes, alkylnaphthalenes and alkylphenanthrenes indicate thermal maturities of about 0.8% Rc for most of the oils. The co-occurrence in all the oils of relatively high amounts of 25-norhopanes with C5 to C9 hydrocarbons, aromatic hydrocarbons and cyclic alkanes implies that the oils are the result of multiple charging, with a heavily biodegraded charge being overprinted by fresher and more pristine oil. The later oil charge was itself variably biodegraded, leading to significant compositional variations across the oilfield, which help delineate compartmentalisation. Biodegradation resulted in strong depletion of n-alkanes (>95%) from most of the oils. Benzene and toluene were partially or completely removed from the Barrow Island oils by water washing. However, hydrocarbons with lower water solubility were either not affected by water washing, or water washing had only a minor effect. There are three main controls on the susceptibility to biodegradation of cyclic, branched and aromatic low molecular weight hydrocarbons: carbon skeleton, degree of alkylation, and position of alkylation. Firstly, ring preference ratios at C6 and C7 show that isoalkanes are retained preferentially relative to alkylcyclohexanes, and to some extent alkylcyclopentanes. Dimethylpentanes are substantially more resistant to biodegradation than most dimethylcyclopentanes, but methylhexanes are depleted faster than methylpentanes and dimethylcyclopentanes. For C8 and C9 hydrocarbons, alkylcyclohexanes are more resistant to biodegradation than linear alkanes. Secondly, there is a trend of lower susceptibility to biodegradation with greater alkyl substitution for isoalkanes, alkylcyclohexanes, alkylcyclopentanes and alkylbenzenes. Thirdly, the position of alkylation has a strong control, with adjacent methyl groups reducing the susceptibility of an isomer to biodegradation. 1,2,3-Trimethylbenzene is the most resistant of the C3 alkylbenzene isomers during moderate biodegradation. 2-Methylalkanes are the most susceptible branched alkanes to biodegradation, 3-methylalkanes are the most resistant and 4-methylalkanes have intermediate resistance. Therefore, terminal methyl groups are more prone to bacterial attack compared to mid-chain isomers, and C3 carbon chains are more readily utilised than C2 carbon chains. 1,1-Dimethylcyclopentane and 1,1-dimethylcyclohexane are the most resistant of the alkylcyclohexanes and alkylcyclopentanes to biodegradation. The straight-chained and branched C5–C9 alkanes are isotopically light (depleted in 13C) relative to cycloalkanes and aromatic hydrocarbons. The effects of biodegradation consistently lead to enrichment in 13C for each remaining hydrocarbon, due to preferential removal of 12C. Differences in the rates of biodegradation of low molecular weight hydrocarbons shown by compositional data are also reflected in the level of enrichment in 13C. The carbon isotopic effects of biodegradation show a decreasing level of isotopic enrichments in 13C with increasing molecular weight. This suggests that the kinetic isotope effect associated with biodegradation is site-specific and often related to a terminal carbon, where its impact on the isotopic composition becomes progressively ‘diluted’ with increasing carbon number.  相似文献   

15.
生物降解作用对原油中烷基菲分布的影响   总被引:1,自引:0,他引:1  
辽河盆地冷东油田原油来源单一,成熟度相近,生物降解是导致原油中烷基菲含量和组成发生变化的主要原因。通过对不同降解程度油砂样品中烷基菲含量和分布的详细地球化学分析,发现中等程度生物降解(3到5级)使烷基菲含量大大降低,而异构体相对含量的变化主要发生在中等程度生物降解之后(4级以上),原油遭受4级以下生物降解影响时,烷基菲参数仍能有效指示成熟度。烷基菲生物降解的难易程度明显受烷基化程度的控制,C3-菲比低烷基取代化合物的抗生物降解能力强,但甲基菲比菲更容易降解,推测这与甲基菲的脱甲基作用有关。生物降解对烷基菲各异构体的消耗有强烈的选择性,在9位或 10位上取代的烷基菲比其他位置取代的烷基菲抗生物降解能力强,根据烷基菲系列中化合物相对含量随生物降解程度的变化,确定了甲基菲、C2-菲和C3-菲各异构体的生物降解顺序,研究成果为芳烃成熟度参数的合理选用和生物降解定量评价提供了依据。  相似文献   

16.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

17.
The hydrocarbon occurrences of asphalts, heavy oils and oil shales in the Dead Sea area and the possible genetic relation between them have been studied. The similarity in organochemical characteristics, i.e., the elemental composition of asphaltenes, the distribution pattern of the saturated hydrocarbons and the predominance of V (over Ni)-porphyrins in both the oils and the asphalts indicate a close relation between them. On the other hand, dissimilarities in the same organochemical characteristics in both the asphalts and the oil shale exclude the hypotheses that asphalt was generated and expelled from the oil shales or that the shales were contaminated by oils. Water washing and biodegradation are considered to be the processes through which preferential depletion of hydrocarbons occurred, altering the oils to asphalts. The burial of the degraded asphalt to a relatively great depth resulted in a secondary generation of small amounts of light saturated hydrocarbons in these asphalts. The oils, which are thought to be the precursors of the asphalts, have either been flushed into the Dead Sea depression from the surrounding elevated areas or have seeped upwards from deep local accumulations in the graben.  相似文献   

18.
辽河盆地东部凹陷原油的碳同位素组成特征   总被引:3,自引:3,他引:3  
通过对辽河盆地东部凹陷原油的饱和烃、芳烃的碳同位素组成特征、原油同位素类型和单体烃同位素特征进行研究 ,发现整个东部凹陷原油及其组分的碳同位素值偏重 ,指示其源岩有机质中藻类和低等水生生物的贡献较少 ;饱和烃—芳烃的碳同位素值关系揭示东部凹陷大部分原油样品与沙河街组沙三段烃源岩的特征相近 ,而南部和北部地区少数样品表现出负的碳同位素异常 ,与该区中生界源岩样品的接近 ,推测原油中可能混入了中生界来源的油气。南部地区各样品的碳同位素类型曲线和单体烃的碳同位素曲线均相似 ,揭示了两者具相同的油气来源。北部地区各原油样品的单体烃的碳同位素类型曲线间具有相似的分布特征 ,但茨榆坨地区的原油样品的碳同位素值比牛居地区的系统偏轻 ,可能是成熟度相对较低引起的 ,表明茨榆坨地区原油具有早期成藏的特征。原油的碳同位素组成特征是研究油气来源和成藏特征分析的一种重要手段。  相似文献   

19.
Studies of biological marker compou nds in five oil samples from a profile wherenormal crude oil,low condensate oil and heavy oil are produced in the Karamay Oilfield have been carried out with great empha-sis on the biodegradation-resisting capability of 13,17 secosteranes,8,14 secohopanes,gammacerane and carotenes.Based on these studies,a sequence of biodegradation-resisting intensities has been established for saturated hydrocarbon biomarkers in crude oils from the Karamay Oilfield.  相似文献   

20.
Oily sludge from gas processing facilities contains components that are major environmental pollutants. Biodegradation is an alternative treatment, but can be affected by other components of the sludge, such as sulphur compounds, so it is important to evaluate the effect of these on oil biodegradation in order to prevent negative impacts. This work studied the transformation of sulphur compounds in oily sludge biodegradation systems at the microcosm level. The predominant sulphur compounds in the original sludge were elemental sulphur and pyrite (9,776 and 28,705.4 mg kg?1, respectively). In the biodegradability assays, hydrocarbon concentrations decreased from 312,705.6 to 186, 760.3 mg kg?1 after 15 days of treatment. After this time, hydrocarbon degrading activity stopped, corresponding with a decrease in hydrocarbon degrading bacteria. These changes were related to a reduction in pH that inhibits biodegradation. During the assay, sulphur compounds were gradually oxidized and transformed. The concentration of sulphate increased from 5,096 to 64,868.3 mg kg?1 after 30 days in the assay, although controls were unchanged. Therefore, it is important to determine changes to the main compounds of the waste in order to assess their impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号