首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

2.
The study of galaxy protoclusters is beginning to fill in unknown details of the important phase of the assembly of clusters and cluster galaxies. This review describes the current status of this field and highlights promising recent findings related to galaxy formation in the densest regions of the early universe. We discuss the main search techniques and the characteristic properties of protoclusters in observations and simulations, and show that protoclusters will have present-day masses similar to galaxy clusters when fully collapsed. We discuss the physical properties of galaxies in protoclusters, including (proto-)brightest cluster galaxies, and the forming red sequence. We highlight the fact that the most massive halos at high redshift are found in protoclusters, making these objects uniquely suited for testing important recent models of galaxy formation. We show that galaxies in protoclusters should be among the first galaxies at high redshift making the transition from a gas cooling regime dominated by cold streams to a regime dominated by hot intracluster gas, which could be tested observationally. We also discuss the possible connections between protoclusters and radio galaxies, quasars, and \(\hbox {Ly}\alpha \) blobs. Because of their early formation, large spatial sizes and high total star-formation rates, protoclusters have also likely played a crucial role during the epoch of reionization, which can be tested with future experiments that will map the neutral and ionized cosmic web. Lastly, we review a number of promising observational projects that are expected to make significant impact in this growing, exciting field.  相似文献   

3.
Low-mass galaxies are known to have played the crucial role in the hydrogen reionization in the Universe. In this paper we investigate the contribution of soft x-ray radiation (E ~ 0.1–1 keV) from dwarf galaxies to hydrogen ionization during the initial reionization stages. The only possible sources of this radiation in the process of star formation in dwarf galaxies during the epochs preceding the hydrogen reionization epoch are hot intermediate-mass stars (M ~ 5–8 M) that entered the asymptotic giant branch (AGB) stage and massive x-ray binaries. We analyze the evolution of the intergalactic gas in the neighborhood of a dwarf galaxy with a total mass of 6 × 108M formed at the redshift of z ~ 15 and having constant star-formation rate of 0.01–0.1 M yr?1 over a starburst with a duration of up to 100 Myr. We show that the radiation from AGB stars heats intergalactic gas to above 100 K and ensures its ionization xe ? 0.03 within about 4–10 kpc from the galaxy in the case of a star-formation rate of star formation 0.03–0.1 M yr?1, and that after the end of the starburst this region remains quasi-stationary over the following 200–300 Myr, i.e., until z ~ 7.5. Formation of x-ray binaries form in dwarf galaxies at z ~ 15 results in a 2–3 and 5–6 times greater size of the ionized and heated region compared to the case where ionization is produced by AGB stars exclusively, if computed with the “x-ray luminosity–star-formation rate” dependence (LX ~ fXSFR) factor fX = 0.1 and fX ~ 1, respectively. For fX ? 0.03 the effect of x-ray binaries is smaller that that of AGB star population. Lyα emission, heating, and ionization of the intergalactic gas in the neighborhood of dwarf galaxies result in the excitation of the 21 cm HI line. We found that during the period of the starburst end at z ~11.5–12.5 the brightness temperature in the neighborhood of galaxies is 15–25 mK and the region where the brightness temperature remains close to its maximum has a size of about 12–30 kpc. Hence the epoch of the starburst end is most favorable for 21 cm HI line observations of dwarf galaxies, because at that time the size of the region of maximum brightness temperature is the greatest over the entire evolution of the dwarf galaxy. In the case of the sizes corresponding to almost 0.’1 for z ~ 12 regions with maximum emission can be detected with the Square Kilometre Array, which is currently under construction.  相似文献   

4.
A series of phenomenological similarities between activity phenomena in the microscopic world and in the world of galaxies is examined. Proceeding from the high metallicity of quasars, it is shown that the relative amount of light elements, primarily hydrogen, increases during the evolution of the universe. Evidence supporting an analogous enrichment of the world of galaxies by dwarf galaxies is presented. A variant is proposed in which cD galaxies are the generators of the clusters of galaxies in which they are located, while all the galaxies of a given cluster are products of the activity of a central supergiant galaxy. An analogous mechanism is apparently responsible for the formation of systems of globular clusters. A physical connection between activity phenomena and cosmic expansion is sought.  相似文献   

5.
It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I &; Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for the Sculptor and Fornax dwarf spheroidal galaxies which have been previously had single element (low resolution) calcium abundance studies (Tolstoy et al., 2001). See Figures 1 and 2.  相似文献   

6.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

7.
We investigate the old globular cluster (GC) population of 68 faint  ( M V > −16 mag)  dwarf galaxies located in the halo regions of nearby (≲12 Mpc) loose galaxy groups and in the field environment based on archival Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) images in F606W and F814W filters. The combined colour distribution of 175 GC candidates peaks at  ( V − I ) = 0.96 ± 0.07 mag  and the GC luminosity function turnover for the entire sample is found at   M V ,TO=−7.6 ± 0.11 mag  , similar to the old metal-poor Large Magellanic Cloud (LMC) GC population. Our data reveal a tentative trend of   M V ,TO  becoming fainter from late- to early-type galaxies. The luminosity and colour distributions of GCs in dIrrs show a lack of faint blue GCs (bGCs). Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy, this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and ωCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius versus cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.  相似文献   

8.
Wide-field far-UV (FUV, 1344–1786 Å) and near-UV (NUV, 1771–2831 Å) imaging from GALEX provides a deep, comprehensive view of the young stellar populations in hundreds of nearby galaxies, shedding new light on the process of star formation (SF) in different environments, and on the interplay between dust and SF. GALEX’s FUV-NUV color is extremely sensitive to stellar populations of ages up to a few hundred Myrs, unambiguously probing their presence and enabling age-dating and stellar mass estimate, together with the characterization of interstellar dust extinction. The deep sensitivity, combined with the wide field-of-view, made possible in particular the discovery and characterization of star formation in extremely low-density, diffuse gas environments such as outer galaxy disks, tidal tails, low-surface-brightness galaxies (LSB) and dwarf Irregular galaxies, and of rejuvenation episodes in early-type galaxies. Such results provide several missing links for interpreting galaxy classes in an evolutionary context, extend our knowledge of the star-formation process to previously unexplored conditions, constrain models of galaxy disk formation, and clarify the mutual role of dust and star formation. We review a variety of star-forming environments studied by GALEX, and provide some model analysis tools useful for interpretation of GALEX measurements, and potentially as basic science planning tools for next-generation UV instruments.  相似文献   

9.
We investigate the variation of current star formation in galaxies as a function of distance along three supercluster filaments, each joining pairs of rich clusters, in the Pisces-Cetus supercluster, which is part of the two-degree Field Galaxy Redshift Survey (2dFGRS). We find that even though there is a steady decline in the rate of star formation, as well as in the fraction of star-forming galaxies, as one approaches the core of a cluster at an extremity of such a filament, there is an increased activity of star formation in a narrow distance range between 3 and  4  h −170 Mpc  , which is 1.5–2 times the virial radius of the clusters involved. This peak in star formation is seen to be entirely due to the dwarf galaxies  (−20 < M B ≤−17.5)  . The position of the peak does not seem to depend on the velocity dispersion of the nearest cluster, undermining the importance of the gravitational effect of the clusters involved. We find that this enhancement in star formation occurs at the same place for galaxies which belong to groups within these filaments, while group members elsewhere in the 2dFGRS do not show this effect. We conclude that the most likely mechanism for this enhanced star formation is galaxy–galaxy harassment, in the crowded infalling region of rich clusters at the extremities of filaments, which induces a burst of star formation in galaxies, before they have been stripped of their gas in the denser cores of clusters. The effects of strangulation in the cores of clusters, as well as excess star formation in the infalling regions along the filaments, are more pronounced in dwarfs since they more vulnerable to the effects of strangulation and harassment than giant galaxies.  相似文献   

10.
We present a list of 75 isolated dwarf galaxies of later types which have no neighbors with a relative radial velocity difference of less than 500 km/s or projected distances of less than 500 kpc. These were selected from ~2000 dwarf galaxies with radial velocities VLG<3500 km/s within the volume of the local supercluster. In terms of their sizes, luminosities, and the amplitudes of their internal motions, the isolated dwarf galaxies do not differ significantly from gas-rich dwarf galaxies in groups and clusters. However, the median mass of neutral hydrogen per unit luminosity for the isolated galaxies is a factor of two greater than for the galaxies of later types in groups. We have also identified 10 presumably isolated spheroidal dwarf galaxies. The discovery of isolated dwarf galaxies populated exclusively by old stars is of great interest for modern cosmological scenarios of galaxy formation.  相似文献   

11.
We propose an evolutionary model for dwarf galaxies in which initially metal-poor gas-rich dwarf irregular (dI) galaxies evolve through bursting Blue Compact Dwarf (BCD) stages and eventually fade from the BCD phase to become dwarf ellipticals (dE). During the bursting phase the surface brightness of the galaxy increases rapidly due to enhanced OB star formation. The source of fuel for the intermittent bursts of star formation is assumed to be primordial gas which continues to collapse onto the already formed central structure. The dE galaxies form as a result of eventual gas depletion through star formation.With this proposed dIBCDdE evolutionary sequence we can explain the similar photometric structure of the different dwarf types and the differences in their star formation rates, surface brightnesses,Hi contents and metallicities. A final central BCD burst can account for the nucleation in brighter dEs and their residual star formation, while earlier more widespread star formation bursts would fade to give an irregular dI. Inflow of gas may allow dEs to be less flattened than dIs.Using galaxy fading and metallicity models we can reproduce the observed number ratiosN(dI)N(BCD) andN(dI)N(dE) and also the observed metallicity magnitude relation of local dwarf spheroidal galaxies.  相似文献   

12.
The fossil record of the Milky Way indicates an evolution including periodic accretions of smaller galaxies and clusters, consistent with hierarchical models of galaxy formation. I discuss three observational programs that demonstrate that the phase space distribution of stars, clusters and dwarf galaxies in the Galactic halo contains degrees of substructure left by the débris of tidally disrupted stellar systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
To understand the role of dwarfs in the context of galaxy formation and evolution, we are studying the star-formation history of some representative irregular and blue compact dwarf galaxies by comparing the observed colour–magnitude diagrams with synthetic ones based on homogeneous sets of stellar evolutionary tracks. Here we present the results obtained for the blue compact I Zw 18, the most metal-poor galaxy known. Our simulations suggest star-formation activity started around 1–0.3 Gyr ago, with evidence of an intense burst around 15–20 Myr ago. I Zw 18 has turned out not to be a young object as previously suggested. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

15.
A search and estimation of the statistical significance of the quasi-periodical structures (QPS) has been carried out: for the luminosity function of the galaxies in a few rich clusters; for the integrated mass function of galaxies in the superclusters identified via = 21 cm observations. Some statistically significant QPS have been revealed. The periods for these structures are in agreement between each other, at this basis the hypothesis has been proposed that an effect of the QPS at the level of galaxies has some universal character. Frequency doubling has been discovered for these QPS.  相似文献   

16.
A multivariate classification has been performed for a large sample of dynamically hot stellar systems comprising globular clusters to giant ellipticals, in quest of the formation theory of ultra compact dwarf galaxies (UCDs). For this K means cluster analysis is carried out together with the optimum criterion (Sugar et al., 2003) with respect to three parameters, logarithm of stellar mass, logarithm of effective radius and stellar mass to light ratio. The present data set has been taken from Misgeld and Hilker (2011). We found five groups MK1–MK5. These are predominated by giant ellipticals (gEs), faint dwarf ellipticals (dEs), globular clusters (GCs), massive compact objects (UCDs and nuclei of dE,Ns) and bright dwarf ellipticals respectively. Almost all UCDs are found either in MK3 or MK4. The fraction is roughly 50%–50% between MK3 and MK4. Comparable fraction of UCDs share properties either with normal GCs or with nuclei of dE,N. This adds a quantitative constraint to the long discussed hypothesis that UCDs may be formed either as massive globular clusters or have an origin similar to nuclei of dwarf galaxies. We finally find that for our clustering test in mass-size-stellar M/L ratios, ultra faint dwarf galaxies are attributed to globular cluster group (MK3) and not to the dwarf galaxy group (MK2). This highlights that there is no clear cut morphological distinction between extended star clusters and ultra faint dwarfs. These groups are highly consistent with the groups found in a previous classification for a smaller sample and completely different set of parameters.  相似文献   

17.
18.
In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.  相似文献   

19.
Recent observations indicate that core-like dark matter structures exist in many galaxies, while numerical simulations reveal a singular dark matter density profile at the center. In this article, I show that if the annihilation of dark matter particles gives invisible sterile neutrinos, the Sommerfeld enhancement of the annihilation cross-section can give a sufficiently large annihilation rate to solve the core-cusp problem. The resultant core density, core radius, and their scaling relation generally agree with recent empirical fits from observations. Also, this model predicts that the resultant core-like structures in dwarf galaxies can be easily observed, but not for large normal galaxies and galaxy clusters.  相似文献   

20.
Environment plays an important role in the evolution of the gas contents of galaxies. Gas deficiency of cluster spirals and the role of the hot intracluster medium in stripping gas from these galaxies is a well-studied subject. Loose groups with diffuse X-ray emission from the intragroup medium (IGM) offer an intermediate environment between clusters and groups without a hot IGM. These X-ray bright groups have smaller velocity dispersion and lower temperature than clusters, but higher IGM density than loose groups without diffuse X-ray emission. A single-dish comparative study of loose groups with and without diffuse X-ray emission from the IGM, showed that the galaxies in X-ray bright groups have lost more gas on average than the galaxies in non X-ray bright groups. In this paper we present GMRT H  i observations of 13 galaxies from four X-ray bright groups: NGC 5044, 720, 1550 and IC1459. The aim of this work is to study the morphology of H  i in these galaxies and to see if the hot IGM has in any way affected their H  i content or distribution. In addition to disturbed H  i morphology, we find that most galaxies have shrunken H  i discs compared to the field spirals. This indicates that IGM-assisted stripping processes like ram pressure may have stripped gas from the outer edges of the galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号