首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Based on multicolor photometry from the 2MASS and Tycho-2 catalogues, we have produced a sample of 38 368 branch red giants that has less than 1% of admixtures and is complete within 500 pc of the Sun. The sample includes 30 671 K giants, 7544Mgiants, 49 C giants, and 104 suspected supergiants or S stars. The photometric distances have been calculated for K, M, and C stars with an accuracy of 40%. Tycho-2 proper motions and PCRV radial velocities are used to analyze the stellar kinematics. The decrease in the stellar distribution density with distance from the Galactic equator approximated by the barometric law, contrary to the Besanconmodel of the Galaxy, and the kinematic parameters calculated using the Ogorodnikov-Milne model characterize the overwhelming majority of the selected K and M giants as disk stars with ages of more than 3 Gyr. A small number of K and M giants are extremely young or, conversely, thick-disk ones. The latter show a nonuniform distribution in the phase space of coordinates and velocities, arguing against isothermality and full relaxation of the disk and for the theory of dynamical streams or superclusters. The spatial distribution and kinematics of the selected C stars force us to consider them as asymptotic branch giants with masses of more than 2M and ages of less than 2 Gyr probably associated with the Gould Belt. The offset of the Sun above the Galactic equator has been found from the distribution of stars to be 13 ± 2 pc, which coincides with the previously obtained value for the clump red giants.  相似文献   

2.
The Tycho-2 proper motions and Tycho-2 and 2MASS photometry are used to select 97348 red giant clump (RGC) stars. The interstellar extinction and photometric distance are calculated for each of the stars. The selected stars are shown to form a selection-unbiased sample of RGC stars within about 350 pc of the Sun with the addition of more distant stars. The distribution of the selected stars in space and their motion are consistent with the assumption that the RGC contains Galactic disk stars with various ages and metallicities, including a significant fraction of stars younger than 1 Gyr with masses of more than 2M . These young stars show differences of their statistical characteristics from those of older RGC stars, including differences in the variations of their distribution density with distance from the Galactic plane and in the dispersion of their velocities found using radial velocities and proper motions. The Sun has been found to rise above the Galactic plane by 13 ± 1 pc. The distribution density of the stars under consideration in space is probably determined by the Local Spiral Arm and the distribution of absorbing matter in the plane of the Gould Belt.  相似文献   

3.
A comparison of observed stellar distributions with a three-component model of the Galaxy is presented. The analysis is based on photometric and photoelectric data obtained along the main Galactic meridian and in two fields near the North Galactic pole (programme MEGA). The assumed model considers the Galaxy as composed of the disk (main sequence and disk red giants), the thick disk and spheroid populations. To model the observed colour distribution, we distinguish main sequence stars and disk red giants as the disk subsystem; white dwarfs, subdwarfs and intermediate giants as the thick disk subsystem; extreme subdwarfs, spheroid giants and horizontal branch stars as the spheroid subsystem. A statistical relation between the apparent and absolute magnitudes of stars which make the maximum contribution to the star counts for a given disk subsystem is derived. In order to achieve the best agreement between the model and observations, we fit the values of the ‘dip’ (aw) of the disk luminosity function, the correction to the absolute magnitude of disk red giants (ΔMVRG) and the expression for interstellar extinction. As the main result, we obtained aw = 0.6 (logarithmic scale) and ΔMVRG = 0.5 mag; the interstellar extinction has to be taken into account by the modified Sandage law.  相似文献   

4.
Photoelectric Vilnius seven-color photometry is presented and analyzed for a sample of 24 red giant branch and clump stars in the open cluster NGC 7789. For each star we have determined photometric spectral type, absolute magnitude, interstellar reddening, effective temperature, metallicity, and surface gravity. From averages over the stars in the sample we find the mean reddening to the cluster E YV = 0.21± 0.02 (s.d.), or E BV = 0.25, and the apparent distance modulus (mM) V = 12.21± 0.10 (s.d.), which yield a distance of 1840 pc. The mean overall metallicity is found to be [Fe/H] = −0.18± 0.09 (s.d.). The clump stars, on average, appear to be slightly more metal-rich than the other red giants, which is most probably caused by evolutionary changes of carbon and nitrogen molecular bands falling in the photometric passbands. A difference in mass between the two groups of stars has also been detected, which suggests that the clump stars might have undergone extra mass loss before reaching their core He-burning phase of evolution.  相似文献   

5.
In the open cluster NGC 752, 89 stars are observed in the Vilnius seven-colour photometric system, including probable members fainter than observed hitherto. Spectral classification of observed stars are made and individual reddening values are determined. The mean reddening of the cluster stars is equivalentE(B - V) = 0 . m 025. By fitting on colour index-magnitude diagrams the cluster Main Sequence with the Hyades one the distance modulus (m - M)0 = 8 . m 15 ± 0 . m 15 is found. For 11 red giant members of the cluster absolute magnitudes are derived and compared with ones of the standard calibration. It is obtained that the cluster giants are in mean 0 . m 6 fainter than giants of corresponding spectral class in the solar vicinity.  相似文献   

6.
A structural study of the old globular cluster NGC 1806 in the LMC has been carried out by star counts onB- andV-ESO 3.6 m telescope plates with three different limiting magnitude levels. The star density distribution was obtained directly from the surface strip count function with the Plummer formalism and the generalized Schuster law according to Lohmann. This yields beside the central density the structural parametern and the characteristic length parameterR 0 for each individual colour and magnitude level.The results show that the blue stellar content of NGC 1806 — the horizontal branch stars — is more concentrated towards the cluster center than the red giant and subgiant objects. Also such a dynamical mass segregation is observed for the red giants compared with the subgiants.Based on observations collected at the European Southern Observatory, La Silla, Chile.  相似文献   

7.
As part of a long‐term project to determine abundances and astrophysical properties of evolved red stars in open clusters, we present high‐precision DDO photoelectric observations for a sample of 33 red giant candidates projected in the fields of nine Galactic open clusters. These data are supplemented with UBV photoelectric photometry of 24 of these stars as well as with CORAVEL radial‐velocity observations for 13 red giant candidates in four of the clusters. We also present Washington photoelectric photometry of a small sample of red giant candidates of the open cluster Ruprecht 97. The likelihood of cluster membership for each star photometrically observed and for 23 additional red giant candidates with UBV and DDO data available in the literature, is evaluated by using two independent photometric criteria. Nearly 82% of the analysed stars are found to have a high probability of being cluster giants. Photometric membership probabilities show very good agreement with those obtained from CORAVEL radial velocities. While E (BV) colour excesses were determined from combined BV and DDO colours, calibrations of the DDO system were used to derive MK spectral types, effective temperatures and metallicities. The derived DDO metallicities range between values typical of moderately metal‐poor clusters ([Fe/H] = –0.19) to moderately metal‐rich ([Fe/H] = 0.25) ones. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The dependence of interstellar extinction on distance in the direction of the dark cloud south of Merope is determined using photoelectric photometry of 93 stars in the Vilnius photometric system. The cloud front edge is detected at 120–130 pc from the Sun and the distance of the Pleiades cluster is found to be 127 pc. Mean extinctionA V in the Merope cloud is of the order of 1.0 mag. There is no evidence of extinction at distances exceeding the Merope cloud distance. Variable extinction method yieldsR=A V/EB-V=3.6, while the maximum polarization wavelength method gives the value 3.4. Some Pleiades stars are suspected to be unresolved binaries.  相似文献   

9.
The Tycho-2 proper motions and five-band Tycho-2 and 2MASS photometry for approximately 2.5 million common stars have been used to select OB stars and to determine the extinction and photometric distance for each of them. We have selected 37 485 stars and calculated their reddenings based on their positions in the two-color V T -H, J-Ks diagrams relative to the zero-age main sequence and the theoretical reddening line for B5 stars. Tests confirm that the selected stars belong to the spectral types O-B with a small admixture of later types. We calculate the extinction coefficient R and its variations with Galactic longitude based on the positions of the selected stars in the two-color B T -V T , V T -Ks diagram. The interstellar extinction for each star is calculated as the product of the reddening found and the coefficient R. The extinction and its variations with Galactic longitude agree well with the extinction based on the model by Arenou et al. (1992). Calibration of the relation between the absolute magnitude and reduced proper motion V T − + 5 + 5 log μ for Hipparcos stars has allowed us to calculate the absolute magnitudes and photometric distances for the selected stars. The distances found agree with those derived from the Hipparcos parallaxes within 500 pc. The distribution of the stars and the extinction variations with distance found show that the selected stars form an almost complete sample of stars with spectral types earlier than B5 within about 750 pc of the Sun. The sample includes many noticeably reddened stars in the first and second Galactic quadrants that are absent from the Hipparcos and Tycho Spectral Types Catalogues. This slightly changes the pattern of the distribution of OB stars compared to the classical pattern based on Hipparcos. Original Russian Text ? G.A. Goncharov, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 1, pp. 10–20.  相似文献   

10.
Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9 ± 0.2 km s?1 kpc?1 and B = ?12.0±0.2 km s?1 kpc?1. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500–1000 pc) RGC stars located near the Galactic plane (|z| < 200 pc) with an average distance of d = 0.7 kpc, the contraction velocity is shown to be Kd = ?3.5 ±0.9 km s?1; a noticeable vertex deviation, l xy = 9 · o 1 ± 0 · o 5, is also observed for them. For stars located well above the Galactic plane (|z| ≥200 pc), these effects are less pronounced, Kd = ?1.7 ± 0.5 km s?1 and l xy = 4 · o 9 ± 0 · o 6. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of ?2.5 ± 0.3 km s?1 kpc?1, which we associate with the warp of the Galactic stellar-gaseous disk.  相似文献   

11.
The linear stability analysis of the radial and non-radial oscillations for the evolutionary model of a star with the mass of 0.6∼3 M8 has been per- formed by using the nonlocal and time-dependent convection theory. The results show that the unstable low-temperature stars on the right side of the instabil- ity strip in the HR diagram can be divided into two groups. One is of the stars of solar-like oscillations, composed of the main-sequence dwarfs, subgiants, and the red giants with low- and intermediate-luminosity, which are unstable in the intermediate- and high-order (nr ≥ 12) p-modes, but stable in the low- order (nr ≤ 5) p-modes. Another is of the Mira-like stars, composed of the luminous red giants and AGB stars, which are just contrary to the solar-like stars, unstable in the low-order (nr ≤ 5) p-modes, but stable in the intermediate- and high-order (nr ≥ 12) p-modes. On the red edge of Cepheid (δ Scuti) insta- bility strip, the oscillations of solar-like and Mira-like stars can be explained uniformly by the coupling between convection and oscillations (CCO). For the low-temperature stars on the right side of the instability strip, the CCO is the dominant excitation and damping mechanism for the low- and intermediate-order p-modes, and the stochastic excitation of turbulence becomes important only for the high-order p-modes of solar-like oscillations.  相似文献   

12.
The distribution of radial (U) and rotational (V) velocities of red clump giants was studied as a function of their heights above the galactic plane. The stars of this type were selected from the compiled catalogue of stellar proper motions and infrared photometry at the north galactic pole with the use of the diagram “color-reduced proper motion.” According to the data on 1800 red clump giants located at heights from 1 to 3 kpc (mostly thick disk stars), mean kinematic parameters of the thick disk were determined: U 0 = −18 ± 2 km/s, V 0 = −56 ± 1 km/s, σ U = 72 ± 2 km/s, and σ V = 58 ± 1 km/s. The velocity of asymmetric drift V 0 and velocity variances σ U , σ V are shown to depend on heights above the galactic plane.  相似文献   

13.
We considered some selected published stellar catalogues with BV and V values for the open cluster NGC 188 and estimated the errors from data comparisons. The results are used to homogenize the data by averaging with weights inversely proportional to the errors squared. A recent calibration by Casagrande et al. (2010) of BV versus effective temperatures for F, G, and K dwarfs and subgiants is used to produce the homogenized effective temperatures for the cluster stars. A homogenized Hertzsprung‐Russell diagram (relationship between the effective temperatures and the absolute magnitudes) is presented and analysed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present a method which separates field dwarfs and field giants by their 2MASS and V apparent magnitudes. This method is based on spectroscopically selected standards and is hence reliable.We applied it to stars in two fields, SA 54 and SA 82, and we estimated a full set of Galactic model parameters for giants including their total local space density. Our results are in agreement with the ones given in the recent literature. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Specifications of a new Apogee Alta U47 CCD camera mounted at the Kyiv meridian axial circle (MAC) are presented. The camera is based on the 1024 × 1024 pxl e2v CCD47-10 with pixel sizes of 13 × 13 μm. Observations are carried out in the scan-drift mode with an effective exposure time of 77 s for equatorial stars. The MAC photometric system answers the standard Johnson V band, the MAC limiting magnitude V is 17 m . The test MAC observations of 2009 give positional accuracy and V magnitude errors equal to approximately 0.1″ and 0.09 m , respectively, for Tycho-2 stars. The telescope is used for observations of equatorial stars with the purpose of detecting their positions, proper motion, and brightness.  相似文献   

16.
Linsky  Jeffrey L. 《Solar physics》1985,100(1-2):333-362
Major advances in our understanding of nonradiatively heated outer atmospheric layers (coronae, transition regions, and chromospheres) and other solar-like activity in stars has occurred in the past few years primarily as a result of ultraviolet spectroscopy from IUE, X-ray imaging from the Einstein Observatory, microwave detections by the VLA, and new optical observing techniques. I critically review the observational evidence and comment upon the trends with spectral type, gravity, age, and rotational velocity that are now becoming apparent. I define a solar-like star as one which has a turbulent magnetic field sufficiently strong to control the dynamics and energetics in its outer atmospheric regions. The best indicator of a solar-like star is the direct measurement of a strong, variable magnetic field and such data are now becoming available, but good indirect indicators include photometric variability on a rotational time scale indicating dark starspots and nonthermal microwave emission. X-rays and ultraviolet emission lines produced by plasma hotter than 104 K imply nonradiative heating processes that are likely magnetic in character, except for the hot stars where the heating is likely by shocks in the wind resulting from radiative instabilities. I conclude that dwarf stars of spectral type G-M and rapidly rotating subgiants and giants of spectral type F-K in spectroscopic binary systems are definitely solar-like. Dwarf stars of spectral type A7-F7 are almost certainly solar-like, and T Tauri and other pre-Main-Sequence stars are probably solar-like. Slowly rotating single giants of spectral type F to early K are also probably solar-like, and the helium-strong hottest Bp stars are interesting candidates for being solar-like. The O and B stars exhibit some aspects of activity but probably have weak fields and are not solar-like. Finally, the A dwarfs and the cool giants and supergiants show no evidence of being solar-like.Staff Member, Quantum Physics Division, National Bureau of Standards.  相似文献   

17.
We investigate the possibilities for tracing interstellar extinction with the ESA's astrometric space mission GAIA. The analysis is based on detailed simulations of the GAIA photometry, which are used to derive the distribution of interstellar matter in a modelled Galaxy. We find that `small' diffuse clouds (diameter D = 4 pc, E B-V = 0.06) will be easily traced with GAIA up to the distances of ∼ 800 pc. `Large' diffuse interstellar clouds (D = 10 pc, E B-V = 0.13) will be located up to the distances of ∼ 2.5 kpc. This holds for the reddening tracers of spectral types O – K2 brighter than V = 17. Inmost cases, due to their low spatial density, the early type stars (O– A2) cannot provide reliable information about the distribution of interstellar matter. None of the reddening tracers measured by GAIA will provide reliable identification of the individual interstellar clouds beyond the distances of ∼ 3 kpc. Therefore, we conclude that the information available from photometric observations will be not sufficient for the detailed reconstruction of the 3-D distribution of Galactic interstellar matter. It is therefore extremely important to define the new strategies which would allow to combine all the available information, including the earlier space- and/or ground-based investigations, together with the information which will be provided by GAIA itself (parallaxes, E B-V etc.). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We present B, V and R band CCD images of the dwarf galaxy LGS-3 (Pisces dwarf). About 180 stars and diffuse objects were found and processed in these frames. The colour-magnitude diagram shows a prominent red giant branch and a few blue stars only. Details of the morphological properties and colour-agnitude diagram indicate to an intermediate (between dIrr and dSph) type of LGS-3. We estimate the galaxy distance modulus to be about (m - M)0 = 23.9 ± 0.3 mag on the basis of the tip of the red giant branch. We measured the galaxy colour to be about B–V = 0.8 mag and the linear diameter 700 pc, which is the smallest one in the Local group.  相似文献   

19.
Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index (V ? I) of the supergiant branch at the luminosity level MI = ?7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies (MB) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.  相似文献   

20.
New BVRI observations for 40 and spectrophotometric measurements for 3 F to G LMC supergiant candidates (and 3 galactic F to G supergiants) are presented. The errors of the BVRI data are 0.01 to 0.03 mag in most cases. The wavelength range of the spectra is 3400 to 6400 Å, their resolution 10 Å. The mean error of the fluxes is 0.03 mag. Spectral indices measuring the strengths of the Hβ, Hγ, Hδ, NaD and CaII H+K lines, the CHα0 and CNβ0 bands, of the Balmer jump and the slope of the continuum redwards are discussed as measures of effective temperature and luminosity on the basis of galactic stars with accurate MK types and parallaxes. The Hγ line and the continuum gradient are very good temperature criteria, the CHα0 band and especially the Balmer jump for luminosity. The luminosity classification given for F to G supergiant candidates in the LMC in the literature is often doubtful. 5 of the 3 stars observed spectrophotometrically turn out to be probably galactic foreground dwarfs on the basis both of the Balmer jump and the comparison of their flux distributions with synthetic ones based on the Kurucz model atmospheres. Surface gravities derived purely on the basis of flux distributions and such ones given by models of stellar evolution agree with each other for dwarfs and giants only. For supergiants the former are about 1.0 dex higher than the latter. As a consequence effective temperatures and metallicities given by these two methods deviate from each other for such stars, too. The intrinsic colours and temperatures of galactic and LMC supergiants do not differ. With absolute magnitudes up to -9.6 mag the upper luminosity limit in the LMC does not exceed that in the Galaxy, where Ia-0 supergiants have MV of up to -9.5 mag. The metallicities of the supergiants show a rather large scatter. Nevertheless the mean metallicities of 0.0 ± 0.09 dex for the Galaxy and -0.6 ± 0.10 dex for the LMC agree well with other observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号