首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foreland-propagating external thrust belts may be considered as essentially plane strain phenomena so that displacements can be correlated throughout their linked, three-dimensional fault geometry. This approach has been applied to part of the northwest external French-Swiss Alps, around the Mont Blanc basement massif. Imbricates of basement and cover sequences on the SW margin of this massif restore to a width in excess of 77 km with an implicit shortening of at least 67 km. These displacements can be correlated with those in the neighbouring Helvetic nappes by transferring movements, via lateral branch lines, onto the Mont Blanc thrust. By reappraising thrust geometries, the Helvetic/Ultrahelvetic nappe complex has been restored to a width of 114 km to the ESE of the Aiguilles Rouges basement massif. Displacements on the internal (SE) margin of the Mont Blanc massif, estimated by balanced sections and a restoration of the Ultrahelvetic klippen in the sub-alps, exceed 59 km. Thrust continuity, incorporating the restorations of nappes and imbricate geometries around the Mont Blanc massif, is illustrated on a crude, restored branch-line map which also serves as a preliminary palaeogeographic reconstruction. External thrust systems, to the east of the external Belledonne/Aiguilles Rouges massif, restore to a width of at least 140 km in the footwall to the Frontal Pennine thrust.  相似文献   

2.
恩格尔乌苏冲断带特征及大地构造意义   总被引:12,自引:0,他引:12       下载免费PDF全文
王廷印  张铭杰 《地质科学》1998,33(4):385-394
研究表明恩格尔乌苏冲断带是华北板块和塔里木板块的缝合线,北东东向断续延长800km以上。该冲断带连同南北陆缘地带构造构成典型的陆-弧-陆碰撞造山带,与碰撞造山作用同时,形成区域性透入性劈理。地层学和同位素地质年代学资料表明,碰撞造山作用发生于海西末期或印支早期。碰撞造山作用的动力学过程主要表现为向南的洋壳俯冲和向北的陆壳仰冲,并伴随右旋剪切滑移运动。恩格尔乌苏混杂岩带为韧性-韧脆性冲断推覆构造,其北侧的前陆褶皱冲断带为脆性-脆韧性冲断推覆及褶皱构造。  相似文献   

3.
4.
福建省晚古生代聚煤前的区域构造格架为三个地体:闽西北地体、闽西南地体及闽东地体。聚煤期构造特征(早古生代晚期):加旦东运动沿政和——大埔深大断裂产生了海沟岛弧系俯冲;同时,沿温州——德化深大断裂产生海沟山弧俯冲,海沟岛弧系在晚古生代形成了福建二叠系含煤地层的中、西部条带,海沟山弧系形成了福建二叠系含煤地层的东部条带。聚煤后的构造特征(中生代),由于印支运动产生新古太平洋板块,并在这时产生了二叠系含煤地层滑脱断层的雏形;燕山运动早期形成了二叠系含煤地层的盖层逆冲推覆构造,燕山运动晚期形成了二叠系含煤地层的基底逆冲推覆构造。  相似文献   

5.
Tectonics of the ophiolite belt from Naga Hills and Andaman Islands,India   总被引:1,自引:0,他引:1  
The ophiolitic rocks of Naga Hills-Andaman belt occur as rootless slices, gently dipping over the Paleogene flyschoid sediments, the presence of blue-schists in ophiolite melange indicates an involvement of the subduction process. Subduction was initiated prior to mid-Eocene as proved by the contemporaneous lower age limit of ophiolite-derived cover sediment as against the accreted ophiolites and olistostromal trench sediment. During the late Oligocene terminal collision between the Indian and Sino-Burmese blocks, basement slivers from the Sino-Burmese block, accreted ophiolites and trench sediments from the subduction zone were thrust westward as nappe and emplaced over the down-going Indian plate. The geometry of the ophiolites and the presence of a narrow negative gravity anomaly flanking their map extent, run counter to the conventional view that the Naga-Andaman belt marks the location of the suture. The root-zone of the ophiolite nappe representing the suture is marked by a partially-exposed eastern ophiolite belt of the same age and gravity-high zone, passing through central Burma-Sumatra-Java. The ophiolites of the Andaman and Naga Hills are also conventionally linked with the subduction activity, west of Andaman islands. This activity began only in late Miocene, much later than onland emplacement of the ophiolites; it further developed west of the suture in its southern part. Post-collisional northward movement of the Indian plate subparallel to the suture, also developed leaky dextral transcurrent faults close to the suture and caused Neogene-Quatemary volcanism in central Burma and elsewhere.  相似文献   

6.
Abstract The effects of Tertiary Alpine metamorphism on pelitic Mesozoic cover rocks have been studied along a cross-section in the central Lepontine Alps in the Nufenen Pass area, Switzerland. Greenschist facies to amphibolite facies conditions are indicated by the formation of the index minerals chloritoid, garnet, staurolite and kyanite in pelitic rocks. Regional metamorphism reached maximum conditions during the interkinematic period between a main Alpine penetrative (D2) and a late Alpine (D3) crenulation type deformation phase or synchronous with the late Alpine deformation. Based on AFM phase relationships four different metamorphic zones can be distinguished: (1) chloritoid zone; (2) staurolite + chlorite zone; (3) staurolite + biotite zone; and, (4) kyanite zone. The isograds that separate these zones can be modelled by univariant reactions in the KFMASH system. The conditions of metamorphism calculated from geological ther-mobarometers for the maximum post-D2 por-phyroblast stage are from North to South: 500° C at 5-6 kbar and 600° C at 7-8 kbar. Detailed thermobarometry of garnet por-phyroblasts with complex textures suggests that maximum temperature was reached later than maximum pressure. Early garnet growth occurred along a prograde P-T-path, post-D2 rims grew with increasing temperature but decreasing pressure, and finally post-D3 garnet formed along a retrograde P-T-path. It may be concluded from the calculated pressure and temperature difference over a short distance (3 km) across the mapped area that the isogradic surfaces of the post-D2 metamorphism are steeply oriented. The data also suggest that isobaric and isothermal surfaces are parallel. Much of the observed metamorphic pattern can be explained as the result of a significant post-D2 differential uplift of the hot Pennine area relative to the Helvetic area along a tectonic contact zone. The closely spaced isograds (isotherms) in the North may then be interpreted as a thermal effect owing to the emplacement of the hot Pennine rocks against the Got-thard massif with its cover. Whereas, in the Pennine metasediments, post-D2 porphyroblast formation can be related to the decompression path which was steep enough for dehydration reactions to proceed. It is also remarkable that late kyanite porphyroblasts probably formed with decreasing pressure. The interpretation given here for the Nufenen Pass area may also apply to the Luk-manier Pass area where similar metamorphic patterns have been reported by Fox (1975). The formation of the ‘Northern Steep Belt’;, as denned by Milnes (1974b), and the associated late Alpine fold zones may, therefore, have significantly modified the metamorphic pattern of the Helvetic-Penninic contact zone.  相似文献   

7.
In Alpine Corsica, the major tectonic event during the late Cretaceous was the thrusting to the west of an ophiolitic nappe and its sedimentary cover upon the Variscan basement and its Mesozoic cover. A detailed field survey shows that the basal contact of the nappe corresponds to a pluri-kilometric scale shear zone. Thus gneissified basement slices have been tectonically emplaced in the ophiolitic nappe. The thrusting was responsible for small scale structures: foliation, lineation and folds, initiated in a HP/LT metamorphic context. The deformation analysis shows that the finite strain ellipsoid lies in the constriction field close to that for plane strain. Moreover occurrences of rotational criteria in the XZ planes (sigmoidal micas, asymmetric pressure shadows, quartz C-axes fabrics) are in agreement with shear from east to west. All structural data from microscopic to kilometric scales, of which the most widespread is a transverse stretching lineation, can be interpreted by a simple shear model involving ductile synmetamorphic deformation. At the plate tectonic scale the ophiolitic obduction is due to intraoceanic subduction blocked by underthrusting of continental crust beneath oceanic lithosphere.  相似文献   

8.
The eastern Central Alps consist of several Pennine nappes with different tectonometamorphic histories. The tectonically uppermost units (oceanic Avers Bündnerschiefer, continental Suretta and Tambo nappes, oceanic Vals Bündnerschiefer) show Cretaceous/early Tertiary W-directed thrusting with associated blueschist facies metamorphism related to subduction of the Pennine units beneath the Austroalpine continental crust. This event caused eclogite facies metamorphism in the underlying continental Adula nappe. The gross effect was crustal thickening. The tectonically lower, continental Simano nappe is devoid of any imprint from this event. In the course of continent-continent collision, high- T metamorphism and N-directed movements occurred. Both affected the whole nappe pile more or less continuously from amphibolite to greenschist facies conditions. Crustal thinning commenced during the regional temperature peak. A final phase is related to differential uplift under retrograde P–T conditions. Further thinning of the crust was accommodated by E- to NE-directed extensional deformation.  相似文献   

9.
Mylonitic structures related to two orogenic events are described from the upper and lower contacts of the Combin zone and the immediately overlying upper Austroalpine Dent Blanche nappe/Mont Mary klippe and the directly underlying lower Austroalpine Etirol-Levaz slice. The first event, Late Eocene in age, commenced during blueschist facies P-T conditions, but pre-dated the peak of subsequent greenschist facies overprint. The second event, Early Oligocene in age, took place during retrograde greenschist facies conditions. Most sense of shear indicators associated with the retrograde mylonites indicate top SE shearing, but subordinate top NW displacing shear sense indicators have also been mapped. Mylonitic top SE shearing appears to be restricted to the Combin zone and its upper and lower contacts. Within the Dent Blanche nappe and Mont Mary klippe and at the base of the Etirol-Levaz slice, structures were observed which developed during blueschist/greenschist facies conditions and are, in conjunction with the P-T-t history of these rocks, inferred to be older. Associated kinematic data indicate a top NW shear sense. Comparable blueschist/greenschist facies shear sense indicators have not been observed in the Combin zone. Nonetheless, the foliation in the Combin zone shows a progressive evolution from blueschist facies to greenschist facies to retrograde greenschist facies conditions. This indicates that the Combin zone and the immediately over- and underlying Austroalpine units shared a common tectono-metamorphic evolution since the Late Eocene. Finite strain data reveal oblate strain fabrics, which are thought to result from a true flattening strain geometry. Flow path modelling reveals a general non-coaxial deformation régime and corroborates significant departures from a simple shear deformation. In the study area, mylonitic top SE shearing in the Combin zone is attributed to Early Oligocene backfolding and backthrusting of the Mischabel phase. Temperature-time curves suggest slight reheating in the Monte Rosa nappe underneath and cooling in the Dent Blanche nappe above the Combin zone, hence confirming a thrust interpretation for this event. The top NW displacing structures are thought to result from Late Eocene emplacement of the Dent Blanche nappe and the Combin zone onto the Middle Pennine Barrhorn series along the Combin fault. As related structures initiated during mildly blueschist facies conditions in the Dent Blanche nappe and the underlying Combin zone and both were emplaced together onto the greenschist facial Barrhorn series, it is concluded that the structures developed as the nappes moved upward relative to the earth's surface. Thus the Combin fault is regarded as a thrust. The geometry of this structure indicates that the Combin fault is an out of sequence thrust that locally cut down section. Hence, top NW out of sequence thrusting caused local thinning of the metamorphic/structural section in association with horizontal shortening. Out of sequence thrusts cutting down section, and back-thrusts, offer the possibility of explaining the pronounced break in the grade of metamorphism across the Combin fault, i.e. the contact between the eclogite facial Zermatt-Saas zone and the overlying lower grade Combin zone, by contractional deformation.  相似文献   

10.
The foliated and compositionally-banded granitic orthogneisses in the central core of the Maggia Nappe, a Lower Pennine basement nappe of the Central Swiss Alps, are shown to be the sheared equivalent of late-Hercynian age granitic intrusions. These ductile shear zones show mineral assemblages in amphibolite facies, are Alpine in age and form an anastomosing network enclosing remnant lozenge-shaped pods of relatively undeformed rock.The foliation developed within the shear zones concomitantly with a change in shape of quartz grain aggregates from initially equidimensional, through ‘tear-drop’ shapes, to ribbon-like aggregates. These shape changes occurred by intracrystalline glide together with intercrystalline slip on deformation-induced planar surfaces.  相似文献   

11.
The Helvetic nappes in Switzerland consist of sediments, which have been sheared off and thrust over the crystalline basement of the European passive continental margin during Alpine orogeny. Their basal shear zones usually root above the external crystalline massifs. However, the mechanisms that initiated the shear zones and the associated nappe formation are still debated. We perform two-dimensional numerical simulations of the shearing of linear viscous fluids above a linear viscous fluid with considerably higher viscosity (quasi-undeformable). The boundary between the fluid, mimicking the sediments, and the quasi-undeformable fluid, mimicking the basement, exhibits geometrical perturbations, mimicking half-grabens. These geometrical perturbations can trigger significant strain localization and the formation of shear zones within the linear viscous fluid although no rheological softening mechanism is active. This kinematic, ductile strain localization is caused by the half-grabens and the viscosity ratio between basement and sediments. The viscosity ratio has a strong control on the kinematics of strain localization, whereas the depth of the half-grabens has a weak control. For sediment viscosities in the order of 1021 Pas and typical half-graben geometries of 5 km depth and 25 km width the localization generates (a) low-angle shear zones at the basement-sediment interface, but also entirely within the sediments, (b) horizontal transport >10 km associated with the shear zones, (c) shear zones with thickness in the order of 100 m, (d) an ordered stacking of model nappes and (e) shear zones that root above the basement. The results suggest that tectonic inheritance in the form of half-grabens and associated kinematic strain localization could have been the triggering mechanism for Helvetic nappe formation, and not rheological softening mechanisms, which might, however, have subsequently further intensified shear localization significantly.  相似文献   

12.
The classical concept of the nappe structure of the central Northern Calcareous Alps (NCA) is in contradiction with modern stratigraphic, structural, metamorphic and geochronological data. We first perform a palinspastic restoration for the time before Miocene lateral tectonic extrusion, which shows good continuity of structures, facies and diagenetic/metamorphic zones. We present a new nappe concept, in which the Tirolic unit practically takes the whole area of the central NCA and is divided into three subunits (nappes): Lower and Upper Tirolic subunit, separated by the Upper Jurassic Trattberg Thrust, and the metamorphic Ultra-Tirolic unit. The Hallstatt (Iuvavic) nappe(s) formed the highest unit, but were completely destroyed by erosion after nappe stacking. Remnants of the Hallstatt nappes are only represented by components of up to 1 km in size in Middle/Upper Jurassic radiolaritic wildflysch sediments ("Hallstatt Mélange" belonging to the Tirolic unit). Destruction of the continental margin started in Middle to Upper Jurassic time and prograded from the oceanic side towards the shelf. The original substratum of the external nappes (Bavaric units) of the NCA was largely the Austroalpine crystalline basement, of the internal nappes (Tirolic units) the weakly metamorphosed Palaeozoic sequences (Greywacke Zone and equivalents). Eocene movements caused limited internal deformation in the Tirolic unit.  相似文献   

13.
Mid-Triassic volcanic rocks are preserved in about eight localities in the nappes of the external Hellenides, and are also widespread in the Pelagonian zone of central Greece. Most have suffered low-grade metamorphism. Immobile trace elements from 35 samples, 80 major element analyses, and pyroxene analyses show that these rocks are the product of an eastward dipping subduction zone. The subducted ocean was perhaps analogous to the Pennine zone of the Alps. The Othris and Pindos ophiolites are probably contemporaneous products of related back-arc extension.Metamorphic mineral assemblages in volcanic rocks of the Phyllite Series of the external Hellenides indicate high-pressure, low-temperature conditions, probably related to a second subduction that occurred prior to the main phase of Hellenide nappe emplacement in the Miocene.  相似文献   

14.
In the area of Arosa?CDavos?CKlosters (Eastern Switzerland) the different tectonic elements of the Arosa zone mélange e.g. the Austroalpine fragments, the sedimentary cover of South Penninic ophiolite fragments, as well as the matrix (oceanic sediments and flysch rocks) show distinctively different metamorphic histories and also different climaxes (??peaks??) of Alpine metamorphism. This is shown by a wealth of Kübler-Index, vitrinite and bituminite reflectance measurements, and K-white mica b cell dimension data. At least six main metamorphic events can be recognized in the area of Arosa?CDavos?CKlosters: (1) A pre-orogenic event, typical for the Upper Austroalpine and for instance found in the sediments at the base of the Silvretta nappe but also in some tectonic fragments of the Arosa zone (Arosa zone mélange). (2) An epizonal oceanic metamorphism observed in the close vicinity of oceanic basement rocks units of the Arosa zone (South Penninic) is another pre-orogenic process. (3) A metamorphic overprint of the adjacent Lower Austroalpine nappes and structural fragments of the Lower Austroalpine in the Arosa zone. This metamorphic overprint is attributed to the orogenic metamorphic processes during the Late Cretaceous. (4) A thermal climax observed in the South Penninic sediments of the Arosa zone can be bracketed by the Austroalpine Late Cretaceous event (3) and the middle Tertiary event (5) in the Middle Penninic units and predates Oligocene extension of the ??Turba phase??. (6) North of Klosters, in the northern part of our study area, the entire tectonic pile from the North Penninic flysches to the Upper Austroalpine is strongly influenced by a late Tertiary high-grade diagenetic to low-anchizone event. In the Arosa zone mélange an individual orogenic metamorphic event is evidenced and gives a chance to resolve diagenetic?Cmetamorphic relations versus deformation. Six heating episodes in sedimentary rocks and seven deformation cycles can be distinguished. This is well explained by the propagation of the Alpine deformation front onto the foreland units. Flysches at the hanging wall of the mélange zone in the north of the study area (Walsertal zone) show data typical for low-grade diagenetic thermal conditions and are therefore sandwiched between higher metamorphic rock units and separated from theses units by a disconformity. The Arosa zone s.s., as defined in this paper, is characterised by metamorphic inversions in the hanging wall and at the footwall thrust, thus shows differences to the Walsertal zone in the north and to the Platta nappe in the south.  相似文献   

15.
Late Mesozoic subduction of Penninic oceanic lithosphere finds its response in the sedimentary record. The corresponding sediments are deposited in a deep-sea trench environment and are developed as distal, partly proximal flysches, containing breccias and olistolites, which are up to kilometer-sized (wildflysch). In the Tauern window this facies is represented by the Nordrahmen zone, which is the equivalent to the Matrei zone. It is proposed to apply the term “Matrei zone” to the entire zone. It forms the high parts of the Bündner Schiefer and Tauernflysch formation. The olistolites derive from the unstable Austroalpine continental margin (Lower Austroalpine). In the Unterengadin window the wildflysch faciès is found in North, Middle and South Penninic position. In that there are kilometer-sized blocks of clearly Lower Austroalpine provenance in a North Penninic position, the Middle Penninic Tasna zone must already have been subducted at the time of emplacement of these olistolites. The Tasna zone itself contains a number of olistolites and disintegrates towards the northeast into a wildflysch zone. Its nappe character is discussed. After earlier fossil findings it is likely that the lower flysch zones of the Unterengadin window contain younger members than the higher ones. Thus, a mechanism of offscraping of the trench sediments and piling up in an accreting wedge above a subduction zone is proposed.  相似文献   

16.
R. N. Brothers  M. C. Blake  Jr.   《Tectonophysics》1973,17(4):337-358
The sialic basement of New Caledonia is a Permian-Jurassic greywacke sequence which was folded and metamorphosed to prehnite-pumpellyite or low-grade greenschist facies by the Late Jurassic. Succeeding Cretaceous-Eocene sediments unconformably overlie this basement and extend outwards onto oceanic crust. Tertiary tectonism occurred in three distinct phases.
1. (1) During the Late Eocene a nappe of peridotite was obducted onto southern New Caledonia from northeast to southwest, but without causing significant metamorphism in the underlying sialic rocks.
2. (2) Oligocene compressive thrust tectonics in the northern part of the island accompanied a major east-west subduction zone, at least 30 km wide, which is identified by an imbricate system of tectonically intruded melanges and by development of lawsonite-bearing assemblages in adjacent country rocks; this high-pressure mineralogy constituted a primary metamorphism for the Cretaceous-Eocene sedimentary pile, but was overprinted on the Mesozoic prehnite-pumpellyite metagreywackes.
3. (3) Post-Oligocene transcurrent faulting along a northwest-southeast line (the sillon) parallel to the west coast caused at least 150 km of dextral offset of the southwest frontal margin of the Eocene ultramafic nappe.
At the present time, the tectonics of the southwest Pacific are related to a series of opposite facing subduction (Benioff) zones connected by transform faults extending from New Britain-Solomon Islands south through the New Hebrides to New Zealand and marking the boundary between the Australian and Pacific plates. Available geologic data from this region suggest that a similar geometry existed during the Tertiary and that the microcontinents of New Guinea, New Caledonia and New Zealand all lay along the former plate boundary which has since migrated north and east by a complex process of sea-floor spreading behind the active island arcs.  相似文献   

17.
18.
内蒙古苏尼特左旗纬向推覆构造的发现及地质意义   总被引:8,自引:0,他引:8  
内蒙古苏尼特左旗中部吐哈默-哈拉干-交其尔-线发现有一条呈纬向延伸达60余公里的推覆构造带。中晚元古代浅变质的绿片岩系自南向北以低角度辗掩于晚古生代花岗岩基之上。推覆构造上盘变质岩中同斜倒转褶皱发育,轴面向北倾倒,伴有一组向南倾斜的叠瓦式冲断面;下盘见有较宽的韧性剪切带;还发现有一系列飞来峰与构造窗沿推覆构造带分布,推测推覆距离在20km以上。这一构造的发现为纬向挤压构造带的存在提供了有力佐证,并显示了本区古生代末期以来岩壳沿经线方向的巨大缩减。   相似文献   

19.
We compare detrital U/Pb zircon age spectra of Carboniferous and Permian / Lower Triassic sedimentary rocks from different structural positions within the Austroalpine nappe pile with published ages of magmatic and metamorphic events in the Eastern Alps and the West Carpathians. Similarities between sink and possible sources are used to derive provenance of sediments and distinct frequency peaks in sink and source age pattern are used for paleogeographic plate tectonic reconstructions. From this, travel paths of Austroalpine and West Carpathian basement units are traced from the Late Neoproterozoic to the Jurassic. We place the ancestry of basement units on the northeastern Gondwana margin, next to Anatolia and the Iranian Luth-Tabas blocks. Late Cambrian rifting by retreat of the Cadomian Arc failed and continental slivers re-attached to Gondwana during a late Cambrian / early Ordovician orogenic event. In the Upper Ordovician crustal fragments of the Galatian superterrane rifted off Gondwana through retreat of the Rheic subduction. An Eo-Variscan orogenic event at ~390 Ma in the Austroalpine developed on the northern rim of Galatia, simultaneously with a passive margin evolution to the south of it. The climax of Variscan orogeny occurred already during a Meso-Variscan phase at ~350 Ma by double-sided subduction beneath Galatia fragments. The Neo-Variscan event at ~330 Ma was mild in eastern Austroalpine units. This orogenic phase was hot enough to deliver detrital white mica into adjacent basins but too cold to create significant volumes of magmatic or metamorphic zircon. Finally, the different zircon age spectra in today's adjacent Carboniferous to Lower Triassic sediments disprove original neighbourhood of basins. We propose lateral displacement of major Austroalpine and West-Carpathian units along transform faults transecting Apulia. The intracontinental transform system was released by opening of the Penninic Ocean and simultaneous closure of the Meliata Hallstatt Ocean as part of the Tethys.  相似文献   

20.
In the Variscan foreland of SW-Sardinia (Western Mediterranean sea), close to the leading edge of the nappe zone, nappe emplacement caused folding and repetition of stratigraphic successions, km-scale offset of stratigraphic boundaries and an extensive brittle-ductile shear zone. Thrusts assumed a significant role, accommodating a progressive change of shortening direction and forming complicated thrust triangle zones. During thrust emplacement of the nappes, strong penetrative deformation affected rocks beneath the basal thrust of the nappe stack and produced coeval structures with both foreland-directed and hinterland-directed (backthrusting) shear sense. Cross-cutting and overprinting relationships clearly show that the shortening direction changed progressively from N–S to E–W, producing in sequence: (1) E–W trending open folds contemporaneous with early nappe emplacement in the nearby nappe zone; (2) recumbent, quasi-isoclinal folds with axial plane foliation and widespread, “top-towards-the-SW”, penetrative shearing; (3) N–S trending folds with axial plane foliation, contemporaneous with late nappe emplacement; (4) backthrusts and related asymmetrical folds developed during the final stages of shortening, postdating foreland-verging structures. Structures at (3) and (4) occurred during the same tectonic transport “top-towards-the-E” of the nappe zone over the foreland. The several generations of folds, thrusts, and foliations with different orientations developed, result in a complex finite structural architecture, not completely explicable by the theoretical model proposed up to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号