首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct N -body calculations are presented of the formation of Galactic clusters using GasEx , which is a variant of the code Nbody6 . The calculations focus on the possible evolution of the Orion nebula cluster (ONC) by assuming that the embedded OB stars explosively drove out 2/3 of its mass in the form of gas about 0.4 Myr ago. A bound cluster forms readily and survives for 150 Myr despite additional mass loss from the large number of massive stars, and the Galactic tidal field. This is the very first time that cluster formation is obtained under such realistic conditions. The cluster contains about 1/3 of the initial 104 stars, and resembles the Pleiades cluster to a remarkable degree, implying that an ONC-like cluster may have been a precursor of the Pleiades. This scenario predicts the present expansion velocity of the ONC, which will be measurable by upcoming astrometric space missions. These missions should also detect the original Pleiades members as an associated expanding young Galactic-field subpopulation. The results arrived at here suggest that Galactic clusters form as the nuclei of expanding OB associations.
The results have wide implications, also for the formation of globular clusters and the Galactic-field and halo stellar populations. In view of this, the distribution of binary orbital periods and the mass function within and outside the model ONC and Pleiades is quantified, finding consistency with observational constraints. Advanced mass segregation is evident in one of the ONC models. The calculations show that the primordial binary population of both clusters could have been much the same as is observed in the Taurus–Auriga star-forming region. The computations also demonstrate that the binary proportion of brown dwarfs is depleted significantly for all periods, whereas massive stars attain a high binary fraction.  相似文献   

2.
Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction f st of its stars. To date there are no observational constraints for f st, although N -body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20–30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that   f st < 50  per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range  10–103 M  keep at most 50 per cent of their stars.  相似文献   

3.
We investigate the physics of gas accretion in young stellar clusters. Accretion in clusters is a dynamic phenomenon as both the stars and the gas respond to the same gravitational potential. Accretion rates are highly non-uniform with stars nearer the centre of the cluster, where gas densities are higher, accreting more than others. This competitive accretion naturally results in both initial mass segregation and a spectrum of stellar masses. Accretion in gas-dominated clusters is well modelled using a tidal-lobe radius instead of the commonly used Bondi–Hoyle accretion radius. This works as both the stellar and gas velocities are under the influence of the same gravitational potential and are thus comparable. The low relative velocity which results means that R tidal< R BH in these systems. In contrast, when the stars dominate the potential and are virialized, R BH< R tidal and Bondi–Hoyle accretion is a better fit to the accretion rates.  相似文献   

4.
We present a model for the formation of massive ( M ≳10 M⊙) stars through accretion-induced collisions in the cores of embedded dense stellar clusters. This model circumvents the problem of accreting on to a star whose luminosity is sufficient to reverse the infall of gas. Instead, the central core of the cluster accretes from the surrounding gas, thereby decreasing its radius until collisions between individual components become sufficient. These components are, in general, intermediate-mass stars that have formed through accretion on to low-mass protostars. Once a sufficiently massive star has formed to expel the remaining gas, the cluster expands in accordance with this loss of mass, halting further collisions. This process implies a critical stellar density for the formation of massive stars, and a high rate of binaries formed by tidal capture.  相似文献   

5.
We present   UBV  I c   CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be ∼10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between   E ( B − V ) ≃ 1.4  to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as  3.7 ± 0.3  . The distance of the cluster is found to be  1.00 ± 0.05 kpc  . Using near-infrared (NIR) colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between <1 and ∼2 Myr, whereas the mean age of the massive stars in the cluster region is found to be ∼2 Myr. There is evidence for second-generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, Γ, in the mass range  2.5 < M /M≤ 28  is found to be  −1.01 ± 0.11  which is shallower than the Salpeter value (−1.35), whereas in the mass range  1.5 < M /M≤ 2.5  the slope is almost flat. The slope of the K -band luminosity function is estimated as  0.27 ± 0.02  , which is smaller than the average value (∼0.4) reported for young embedded clusters. Approximately 32 per cent of Hα emission stars of Be 59 exhibit NIR excess indicating that inner discs of the T Tauri star (TTS) population have not dissipated. The Midcourse Space Experiment (MSX) and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust.  相似文献   

6.
The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time-scales longer than a free-fall time of a pre-cluster cloud core. Here, the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: the focusing of stellar orbits leads to an enhancement of the density of field stars in the vicinity of the centre of the young star cluster; and due to the time-dependent potential of the forming cluster some of these stars can get bound gravitationally to the cluster. These stars exhibit similar kinematical properties to the newly formed stars and cannot be distinguished from them on the basis of radial velocity or proper motion surveys. Such contaminations may lead to a wrong apparent star formation history of a young cluster. In the case of the ONC, the theoretical number of gravitationally bound older low-mass field stars agrees with the number of observed older low-mass stars.  相似文献   

7.
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of  25.5 M  . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.  相似文献   

8.
The effect of gas ejection on the structure and binding energy of newly formed stellar clusters is investigated. The star formation efficiency (SFE), necessary for forming a gravitationally bound stellar cluster, is determined.
Two sets of numerical N -body simulations are presented. As a first simplified approach we treat the residual gas as an external potential. The gas expulsion is approximated by reducing the gas mass to zero on a given time-scale, which is treated as a free parameter. In a second set of simulations we use smoothed particle hydrodynamics (SPH) to follow the dynamics of the outflowing residual gas self-consistently. We investigate cases where gas outflow is induced by an outwards propagating shock front and where the whole gas cloud is heated homogeneously, leading to ejection.
If the stars are in virial equilibrium with the gaseous environment initially, bound clusters only form in regions where the local SFE is larger than 50 per cent or where the gas expulsion time-scale is long compared with the dynamical time-scale. A small initial velocity dispersion of the stars leads to a compaction of the cluster during the expulsion phase and reduces the SFE needed to form bound clusters to less than 10 per cent.  相似文献   

9.
UBVRI CCD photometry in a wide field around two young open clusters, NGC 663 and 654, has been carried out. Hα and polarimetric observations for the cluster NGC 654 have also been obtained. We use the photometric data to construct colour–colour and colour–magnitude diagrams, from which we can investigate the reddening, age, mass and evolutionary states of the stellar contents of the these clusters. The reddening across the cluster regions is found to be variable. There is evidence for anomalous reddening law in both clusters; however, more infrared and polarimetric data are needed to conclude about the reddening law. Both clusters are situated at about a distance of 2.4 kpc. Star formation in both clusters is found to be a continuous process. In the case of NGC 663, star formation seems to have taken place sequentially, in the sense that formation of low-mass stars precedes the formation of most massive stars. Whereas, in the case of NGC 654, formation of low-mass stars did not cease after the formation of most massive stars in the cluster.  相似文献   

10.
The initial condition of the formation of massive stars is still unclear at present. In particular, it is still debatable whether or not massive stars are formed in the cluster center. Some people considered from the viewpoint of time scale and thought that the mass segregation phenomena in embedded clusters means that the massive stars can only be born in the cluster center. In this paper we used the Monte Carlo method to make numerical simulation of the dynamical evolution of embedded clusters and the result is compared with the observations. It is assumed that at the initial time massive stars are randomly distributed. It was found that, due to the random motions of massive stars, temporary mass segregation may exist at certain times in the course of evolution of a given embedded cluster, and this phenomenon may be very prominent in some of them. It is pointed out that massive star formation in the center is not the only explanation for mass segregation in embedded clusters. In addition, dynamical friction from the gas can effectively reduce the time scale of the dynamical mass segregation. In consequence, the probability of temporary mass segregation is increased.  相似文献   

11.
OB星协和年轻星团是恒星形成与早期演化的“化石”,同时也是研究初始重质量函数(IMF)的最好场所;文中就OB星协和年轻星团的形成和早期演化方面的研究进展作了一评述,还论述了IMF的测定和研究情况,并对相关的速逃OB星及蓝离散星问题作了简要介绍。  相似文献   

12.
The observed properties of young star clusters, such as the core radius and luminosity profile, change rapidly during the early evolution of the clusters. Here we present observations of six young clusters in M51 where we derive their sizes using Hubble Space Telescope ( HST ) imaging and ages using deep Gemini-North spectroscopy. We find evidence for a rapid expansion of the cluster cores during the first 20 Myr of their evolution. We confirm this trend by including data from the literature of both Galactic and extragalactic embedded and young clusters, and possible mechanisms (rapid gas removal, stellar evolutionary mass loss and internal dynamical heating) are discussed. We explore the implications of this result, focussing on the fact that clusters were more concentrated in the past, implying that their stellar densities were much higher and relaxation times ( t relax) correspondingly shorter. Thus, when estimating if a particular cluster is dynamically relaxed (i.e. when determining if a cluster's mass segregation is due to primordial or dynamical processes), the current relaxation time is only an upper limit, with t relax likely being significantly shorter in the past.  相似文献   

13.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

14.
A membership catalogue for Praesepe was compiled and split into four mass bins. A contour plot indicates the presence of a subcluster some 3 pc from the centre of the cluster, of approximately 30 M. A tidally truncated King profile was fitted to the remainder of the cluster and the tidal radius is found to be 12.1 pc; the mass of the cluster (excluding the subcluster) is 630 M. From the calculated velocity dispersions we find that the cluster appears to have too much kinetic energy and should be rapidly disintegrating. X-ray data suggest that there may be an age spread between the main core stars and the subcluster stars. This leads us to the conclusion that Praesepe is two merging clusters.  相似文献   

15.
Stellar photometry derived from the INT/WFC Photometric Hα Survey (IPHAS) of the Northern Galactic plane can be used to identify large, reliable samples of A0–A5 stars. For every A-type star, so identified, it is also possible to derive individual reddening and distance estimates, under the assumption that most selected objects are on or near the main sequence, at a mean absolute r ' magnitude of 1.5–1.6. This study presents the method for obtaining such samples and shows that the known reddenings and distances to the open clusters NGC 7510 and NGC 7790 are successfully recovered. A sample of over 1000 A-type stars is then obtained from IPHAS data in the magnitude range  13.5 < r ' < 20  from the region of sky including the massive northern OB association Cyg OB2. An analysis of these data reveals a concentration of ∼200 A stars over an area about a degree across, offset mainly to the south of the known 1–3 Myr old OB stars in Cyg OB2: their dereddened r ' magnitudes fall in the range 11.8–12.5. These are consistent with a ∼7 Myr old stellar population at distance modulus DM = 10.8, or with an age of ∼5 Myr at DM = 11.2. The number of A-type stars found in this clustering alone is consistent with a lower limit to the cluster mass of  ∼104 M  .  相似文献   

16.
A morphological analysis has been presented as a completed work for estimating the most physical properties of open star cluster NGC 7296. For this purpose, near‐IR database of the digital Two Micron All Sky Survey (2MASS) has been used. Center, radius, membership, distances, reddening, age, metallicity, luminosity and mass functions, total mass, mass segregation and the dynamical relaxation time of the cluster have been estimated. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
19.
赵君亮 《天文学进展》2007,25(4):338-345
对疏散星团质量分层的有关问题做了简要的评述,包括空间质量分层和速度质量分层的表现形式和探测途径,质量分层形成机制的研究现状.最后概要介绍了2MASS测光资料对探讨疏散星团质量分层效应的作用.  相似文献   

20.
We report observations of the He  i λ 5876 (D3) line in the late A- and early F-type stars in the Pleiades and Alpha Persei star clusters used to determine chromospheric activity levels. This represents the first sample of young stars in this temperature range with chromospheric activity measurements. We find the same average activity level in the young early F stars as in Hyades-age stars and field stars. In addition, the young star sample shows the same large star-to-star variation in activity as seen in the older stars. Thus, as a whole, chromospheric activity in this photospheric temperature range remains the same over nearly a factor of 100 in stellar age (50 Myr to 3 Gyr), in striking contrast to the behaviour of later-type stars. In the five late A stars we find three certain detections of D3 and one likely detection. This includes the bluest star yet observed with a chromospheric D3 line, Pleiades star HII 1362 at ( B − V )0=0.22, making it one of the earliest stars with an observed chromosphere. The late A stars have D3 equivalent widths comparable to the weakest early F stars. However, when comparing D3 measurements in the young late A stars with older late A stars, we find evidence for a slight decrease in activity with age based on the large number of non-detections in the older stars. We find an apparently linear relationship between the activity upper limit and B − V over our entire range of B − V . Extrapolated blueward, this relationship predicts that the chromospheric D3 line would disappear for all stars at B − V ≈0.13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号