首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 587 毫秒
1.
缓冲材料作为高放废物深地质处置库中一道重要的人工屏障,与高放废物容器和处置库围岩直接接触,在高放废物衰变热、辐射作用和地下水等影响下产生复杂的热-水-力-化学耦合作用,为了验证缓冲材料是否能长期有效地发挥其屏障材料的作用,核工业北京地质研究院利用高庙子钠基膨润土组装并运行了模拟中国高放废物地质处置室 尺寸的大型缓冲材料膨润土试验台架(China-Mock-Up)。建立了缓冲材料试验台架的安装和试验方法,依据实测数据和理论分析,揭示了热-水-力-化学耦合作用条件下膨润土中的相对湿度是在加热器的热效应和外部供水的湿效应共同作用下发生变化的,压实膨润土中应力的变化主要是由于膨润土遇水膨胀和加热器的热效应引起的,试验验证了模拟高放废物地质处置室内加热器(废物罐)运行初期的位移过程,为缓冲材料和高放废物地质处置库的设计提供了重要的工程参数和理论依据。  相似文献   

2.
沈珍瑶  程金茹 《地质通报》2002,21(3):163-165
基于“多重屏障原理”的深地质处置是国内外公认的处置高放射性核废物的合适方法,本文从处置库建造与运行对环境的影响及环境对处置库反作用两方面探讨高放废物深地质处置中涉及的有关环境问题,并指出为确保处置库的长期安全性,必须特别注重选址及多因素耦合作用研究。  相似文献   

3.
基于“多重屏障原理”的深地质处置是国内外公认的处置高放射性核废物的合适方法。本文从处置库建造与运行对环境的影响及环境对处置库反作用两方面探讨高放废物深地质处置中涉及的有关环境问题,并指出为确保处置库的长期安全性,必须特别注重选址及多因素耦合作用研究。  相似文献   

4.
用于高放射性废物深地质处置的粘土材料研究   总被引:19,自引:1,他引:19  
按照高放射性废物深地质处置库中缓冲材料的作用及要求,针对8个主要核国家采用的9种蒙脱石类粘土的样品来源、矿物成分、主要物理化学特征和热—水—力学性能进行分析比较发现:中国内蒙古高庙子膨润土蒙脱石含量较高,阳离子交换容量和比表面积较大,高庙子钙膨润土具有很好的不渗透性、高膨胀性和良好的导热性能。因此高庙子膨润土可作为中国高放射性废物深地质处置库缓冲材料的基料。  相似文献   

5.
高压实膨润土热湿耦合效应实验室模拟   总被引:2,自引:1,他引:1  
本文研究了作为高放废物深地质处置库最后一道人工屏障-缓冲层在热湿耦合艇下的宏观表现,通过自行设计的实验,得到了一些有益的启示,初步认为在本研究涉及的时间范围内,水势场对高压实膨润土中温度场分布影响较小,而温度场对其中水分运移有一定影响。文中介绍了有关实验设计、实验步骤,实验结果与分析,对多孔介质中传热传质研究及高放废物深地质处理有一定参考价值。.  相似文献   

6.
地质系统热-水-力耦合作用的随机建模初步研究   总被引:2,自引:0,他引:2  
热-水-力(THM)耦合作用是岩石力学与环境地质中的重要基础理论问题,核废料地质处置库周围的缓冲材料和围岩中的热-水-力耦合现象将影响其力学稳定性、热传导性和渗透性,进而影响放射性核素在裂隙岩体中的迁移规律。核废料或放射性废料的地下深埋处置是国际上正在研究的永久性隔离的有效方法之一。因此,对核废料地质处置法安全性评估的一个重要内容就是对裂隙岩体中力学稳定性与构造应力、地下水渗流及热载荷等的耦合作用之数值模拟和评估。这已成为当前刻不容缓的重要的环境影响评价课题。笔者研究了温度场-渗流场-应力场中热传导系数和渗透率以及岩体力学参数的空间变异性,用实验方法研究三场耦合效应及裂隙岩体的场性能等效处理,试图建立热-水-力耦合作用的随机性数学模型及可视化数值模拟方法,为核废料地质处置安全性评估提供直观的新方法。  相似文献   

7.
高放废物深地质处置中的多场耦合与核素迁移   总被引:8,自引:3,他引:5  
概括了深地下工程的深地质处置库的若干特点,简要介绍了多场耦合的机理与类型,论述了高放废物深地质处置多场耦合与核素迁移问题的特点及研究现状,最后提出了高放废物深地质处置多场耦合与核素迁移所需研究的主要问题。  相似文献   

8.
我国高放废物处置库缓冲/回填材料压实膨胀特性研究   总被引:11,自引:0,他引:11  
本文研究了我国高放废物地质处置库缓冲/回填材料-内蒙古高庙子膨润土的压实、膨胀力和膨胀变形特性。实验结果表明,膨润土样品的压实密度与压制压力和蒙脱石含量有关,膨胀力与样品压实密度和蒙脱石含量有关,样品在荷载作用下膨胀变形明显减小。  相似文献   

9.
高放废物深地质处置及国内研究进展   总被引:3,自引:2,他引:1  
核能在产生电力造福社会的同时 ,也留下了放射性废物。我们有责任对这些废物实施安全和正确的管理。本文阐述了高放废物深地质处置的一般概念及处置库选址研究中的若干问题 ,同时介绍了国内高放废物深地质处置研究的进展.  相似文献   

10.
中国高放废物深地质处置研究   总被引:5,自引:2,他引:3  
中国的放射性废物深地质处置研究始于1985年,在中国核工业总公司科技局下设有“高放废物深地质处置研究协调组”负责研究项目的计划,协调和实施,协调组的组长单位是核工业北京地质研究院,参加单位有核工业北京工程设计研究院,中国原子能科学研究院和中国辐射防护研究院,中国已初步提出了高效废物深地质处置研究发展计划,其目标是2040年左右建成一个国家地质处置库,中国将采用深地质处置方式处置高放废物,处置对象为  相似文献   

11.
One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydromechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository.  相似文献   

12.
沈珍瑶  杨志峰 《地球科学》2000,25(5):514-517
回顾了高放废物处置概况, 给出了剂量场-温度场-水势场-应力场耦合研究的意义, 探讨了剂量场计算公式与热-湿-力耦合方程及其求解, 最后指出了这一领域的若干优先研究方向.   相似文献   

13.
DECOVALEX Project: from 1992 to 2007   总被引:3,自引:0,他引:3  
The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems—subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project.  相似文献   

14.
A FEM model for analysis of fully coupled multiphase flow, thermal transport and stress/deformation in geological porous media was developed based on the momentum, mass and energy conservation laws of the continuum mechanics and the averaging approach of the mixture theory over a three phase (solid–liquid–gas) system. Six processes (i.e. stress–strain, water flow, gas flow, vapor flow, heat transport and porosity evolution processes) and their coupling effects are considered, which not only makes the problem well-defined, but renders the governing PDEs closed, complete, compact and compatible. Displacements, pore water pressure, pore gas pressure, pore vapor pressure, temperature and porosity are selected as basic unknowns. The physical phenomena such as phase transition, gas solubility in liquid, thermo-osmosis, moisture transfer and moisture swelling are modeled. As a result, the relative humidity and other related variables in porous media can be evaluated on a sounder physical basis. A three dimensional computer code, THYME3D, was developed, with eight degrees of freedom at each node. The laboratory CEA Mock-up test and the field scale FEBEX benchmark test on bentonite performance assessment for underground nuclear waste repositories were used to validate the numerical model and the software. The coupled THM behaviors of the bentonite barriers were satisfactorily simulated, and the effects and impacts of the governing equations, constitutive relations and property parameters on the coupled THM processes were understood in terms of more straightforward interpretation of physical processes at microscopic scale of the porous media. The work developed enables further in-depth research on fully coupled THM or THMC processes in porous media.  相似文献   

15.
岩土介质多场耦合问题需考虑诸多因素,温度、渗流及应力之间的耦合关系复杂,试验条件不易控制,且难以实现,因此,辅以数值模拟手段具有重要的意义。基于混合物理论,推导出岩土介质温度、渗流和应力耦合的数学模型及其控制方程,提出该数学模型的求解方法,以MATLAB语言为平台,将Abaqus程序作为一个模块嵌入迭代算法程序中,编制了多场耦合分析程序,并给出了2个典型算例验证该方法的有效性和实用性。然后,将建立的多场耦合模型和计算程序应用于石油钻井施工过程的模拟,重点分析井壁围岩内温度场、渗流场和应力场的变化规律,以及钻井液温度的变化对井壁稳定性的影响。研究成果对我国地下石油、核废料储存等工程设计和施工具有一定的指导意义。  相似文献   

16.
The study of heat transfer, water flow, and swelling pressure development in engineered clay barriers and the evaluation of the influence of these phenomena on the barrier properties are important issues for predicting the performance of nuclear waste repository facilities. In this work, an experimental setup is presented especially meant to assess the response of the sand–bentonite mixture under conditions close to that of the buffer in a radioactive waste repository. A newly developed column device for laboratory testing of coupled thermo-hydro-mechanical (THM) behaviour of clay-buffer materials is introduced and its calibration, verification and the first experimental data are presented and discussed. The main features of the column device are: hydraulic and thermal gradients are possible to be applied; water content, suction and temperature development can be measured continuously at three locations along the sample height; swelling stress can be measured at top and the bottom of the sample. Measuring transient temperature, water content and suction simultaneously at the same height levels and with special care to minimise the sample disturbance is one of the advantages of the column device proposed here when compared to that previously reported in the literature. The main objectives of this paper are: (1) to describe the experimental device, (2) to introduce the sensors implemented and their calibration, and (3) to present and discuss the first experimental results obtained with the new equipment. The first experimental results show promise in the ability of the newly developed column device to provide reliable data for assessing the THM behaviour of expansive materials that are foreseen as buffer material in high level waste repositories.  相似文献   

17.
18.
Subway tunnels and their surrounding geotechnical media are taken as an entirety, namely, tunnel-geomaterial system (TGS), and the stability and durability of the subway tunnels are subjected to the responses of the TGS to the thermal (T), hydraulic (H) and mechanical (M) loadings and their coupled effects. Modeling of the coupled THM processes that occur in the TGS are important for reliably assessing and predicting the performance of subway tunnels. Therefore, a numerical model of coupling the THM processes in the TGS is developed incorporating the equilibrium, motion, constitutive and compatibility equations. The proposed model considers full coupling between the thermal (temperature variation), hydraulic (water seepage), mechanical (subsidence) processes and changes in the material properties, such as stress-strain relation, viscosity, thermal conductivity, and hydraulic conductivity. The developed model is validated through comparisons of field tests, laboratory experiments and numerical simulations. Favorable agreement between the modeling results and the compared data verifies the capability of the developed model to well describe the THM behavior of subway tunnels in the TGS and their evolutions.  相似文献   

19.
An unconventional numerical scheme is developed to simulate coupled thermo-hydro-mechanical (THM) processes in partially saturated medium. The non-isothermal, unsaturated fluid flow and mechanical processes are sequentially coupled by updating all the state variables using cellular automaton technique and finite difference method on spatial and temporal scale, respectively. A new cellular automaton updating scheme is proposed by introducing a fast successive relaxation index, which greatly improves the computational efficiency in the simulation of THM coupling process. This is implemented in a self-developed numerical system, i.e., an elasto-plastic cellular automaton (EPCA3D), which was used to numerically reproduce the coupled THM behavior of bentonite pellets in a column experiment that was heated up to 140 °C firstly and then was hydrated simulating the resaturation of the backfilling. By using the cellular automaton technique in EPCA3D, the challenging courses of the changing boundary conditions over time and space during the experiment are conveniently implemented. The EPCA3D was able to reproduce the main physical processes of the in laboratory column bentonite experiment within the heating and hydration phase. The modeling results for the evolution of temperature, relative humidity, water uptake and axial pressure are consistent with the experimental data in terms of trends and magnitudes, which verifies the realistic simulation with the developed model and contributes to a deeper understanding of the observed phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号