首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
结合CO_2地质利用与封存技术机理,在国际权威潜力评估公式的基础上,系统地提出了适合中国地质背景的次盆地尺度CO_2封存潜力评估方法及关键参数取值。同时,以四川盆地为例,依次开展了枯竭油田地质封存与CO_2强化石油开采、枯竭气田与CO_2强化采气、不可采煤层地质封存与CO_2驱替煤层气,以及咸水层地质封存技术的CO_2地质封存潜力。结果表明,四川盆地利用深部咸水层与枯竭天然气田CO_2地质封存潜力最大,期望值分别达154.20×10~8t和53.73×10~8t。其中,枯竭天然气田因成藏条件好、勘探程度高、基础建设完善,为四川盆地及其周边利用枯竭气田CO_2地质封存技术实现低碳减排提供了早期示范机会。CO_2地质利用与封存潜力评估方法,对进一步开展全国次盆地尺度理论封存潜力评估与工程规划具有重要意义。  相似文献   

2.
From 2010 to 2012, the China Geological Survey Center for Hydrogeology and Environmental Geology Survey (CHEGS) carried out the project “Potential evaluation and demonstration project of CO2 Geological Storage in China”. During this project, we developed an evaluation index system and technical methods for the potential and suitability of CO2 geological storage based on China’s geological conditions, and evaluated the potential and suitability of the primary basins for CO2 geological storage, in order to draw a series of regional scale maps (at a scale of 1:5000000) and develop an atlas of the main sedimentary basins in China. By using these tools, we delineated many potential targets for CO2 storage. We also built techniques and methods for site selection and the exploration and assessment of CO2 geological storage in deep saline aquifers. Furthermore, through cooperation with the China Shenhua Coal to Liquid and Chemical Co., Ltd., we successfully constructed the first coal-based demonstration project for CO2 geological storage in deep saline aquifers in the Yijinhuoluo Banner of Ordos in the Inner Mongolia Autonomous Region, which brought about the basic preliminary theories, techniques, and methods of geological CO2 storage in deep saline aquifers under China’s geological conditions.  相似文献   

3.
This paper reports on the regional screening, selection and geological characterisation of a potential on-shore CO2 storage site (saline aquifer) in north-eastern Germany. The main objective of this study was to identify and investigate a candidate storage site, capable to accommodate the total amount of approximately 400 million tons of CO2. Such a volume is produced by a modern, lignite-fired power plant within its operation lifetime of approximately 40 years. Within north-eastern Germany, several saline aquifers of Triassic, Jurassic and Cretaceous age have been evaluated with respect to their regional occurrence, storage potential and basic reservoir properties. Subsequent to a ranking, considering different criteria, the anticlinal structure Schweinrich holding suitable saline aquifers of the uppermost Triassic and lowest Jurassic has been selected from a number of identified candidate sites. According to results of the geological site characterisation, including structural geological investigations and 3D reservoir modelling, the structure Schweinrich seems to be a suitable site for industrial large scale CO2 storage. Further data acquisition (new wells and 3D seismics) and research (more detailed and comprehensive modelling) is needed in order to prove the structural integrity of the storage site and assure long-term safety.  相似文献   

4.
5.
2010—2012年,中国地质调查局水文地质环境地质调查中心承担完成的“全国二氧化碳地质储存潜力评价与示范工程计划项目”,全面建立了我国二氧化碳地质储存潜力与适宜性评价指标体系与评价技术方法,评价了主要沉积盆地的二氧化碳地质储存潜力与适宜性,完成了全国1∶500万评价图系和主要盆地评价图集编制,圈定出一批二氧化碳地质储存目标靶区;构建了深部咸水层二氧化碳地质储存工程选址、场地勘查与评价技术方法;与神华集团合作,在内蒙古鄂尔多斯市伊金霍洛旗成功实施了我国首个深部咸水层二氧化碳地质储存示范工程,基本形成了我国二氧化碳地质储存基本理论和技术方法体系。  相似文献   

6.
Underground geological storage of CO2 in deep saline aquifers is considered for reducing greenhouse gases emissions into the atmosphere. However, some issues were raised with regard to the potential hazards to shallow groundwater resources from CO2 leakage, brine displacement and pressure build-up. An overview is provided of the current scientific knowledge pertaining to the potential impact on shallow groundwater resources of geological storage of CO2 in deep saline aquifers, identifying knowledge gaps for which original research opportunities are proposed. Two main impacts are defined and discussed therein: the near-field impact due to the upward vertical migration of free-phase CO2 to surficial aquifers, and the far-field impact caused by large-scale displacement of formation waters by the injected CO2. For the near-field, it is found that numerical studies predict possible mobilization of trace elements but concentrations are rarely above the maximum limit for potable water. For the far-field, numerical studies predict only minor impacts except for some specific geological conditions such as high caprock permeability. Despite important knowledge gaps, the possible environmental impacts of geological storage of CO2 in deep saline aquifers on shallow groundwater resources appears to be low, but much more work is required to evaluate site specific impacts.  相似文献   

7.
8.
The Ketzin pilot site, led by the GFZ German Research Centre for Geosciences, is Europe??s longest-operating on-shore CO2 storage site with the aim of increasing the understanding of geological storage of CO2 in saline aquifers. Located near Berlin, the Ketzin pilot site is an in situ laboratory for CO2 storage in an anticlinal structure in the Northeast German Basin. Starting research within the framework of the EU project CO2SINK in 2004, Ketzin is Germany??s first CO2 storage site and fully in use since the injection began in June 2008. After 39?months of operation, about 53,000 tonnes of CO2 have been stored in 630?C650?m deep sandstone units of the Upper Triassic Stuttgart Formation. An extensive monitoring program integrates geological, geophysical and geochemical investigations at Ketzin for a comprehensive characterization of the reservoir and the CO2 migration at various scales. Integrating a unique field and laboratory data set, both static geological modeling and dynamic simulations are regularly updated. The Ketzin project successfully demonstrates CO2 storage in a saline aquifer on a research scale. The results of monitoring and modeling can be summarized as follows: (1) Since the start of the CO2 injection in June 2008, the operation has been running reliably and safely. (2) Downhole pressure data prove correlation between the injection rate and the reservoir pressure and indicates the presence of an overall dynamic equilibrium within the reservoir. (3) The extensive geochemical and geophysical monitoring program is capable of detecting CO2 on different scales and gives no indication for any leakage. (4) Numerical simulations (history matching) are in good agreement with the monitoring results.  相似文献   

9.
As part of the Swiss programme for high-level radioactive-waste disposal, a Jurassic shale (Opalinus Clay) is being investigated as a potential host rock. Observations in clay pits and the results of a German research programme focusing on hazardous waste disposal have demonstrated that, at depths of 10–30 m, the permeability of the Opalinus Clay decreases by several orders of magnitude. Hydraulic tests in deeper boreholes (test intervals below 300 m) yielded hydraulic conductivities <10–12 m/s, even though joints and faults were included in some of the test intervals. These measurements are consistent with hydrogeological data from Opalinus Clay sections in ten tunnels in the Folded Jura of northern Switzerland. Despite extensive faulting, only a few indications of minor water inflow were encountered in more than 6,600 m of tunnel. All inflows were in tunnel sections where the overburden is less than 200 m. The hydraulic data are consistent with clay pore-water hydrochemical and isotopic data. The extensive hydrogeological data base – part of which derives from particularly unfavourable geological environments – provides arguments that advective transport through faults and joints is not a critical issue for the suitability of Opalinus Clay as a host rock for deep geological waste disposal. Electronic Publication  相似文献   

10.
Geological relationships, hydrogeology and chemical composition of ground water in northern Banat were studied through the period 2000–2004 using the available background data from published and unpublished sources. Northern Banat is the extreme northeastern part of the Republic of Serbia and a geotectonic part of the vast Pannonian depression. The source of domestic and industrial water supply is only groundwater from artesian and subartesian aquifers of Lower Pleistocene (Q11) and Upper Pleistocene (Pl32) sand deposits. The ground water, “peculiar” in chemical composition, is the only source of drinking water in the arid area. A notable variation in the chemical composition of artesian waters within the same geotectonic unit (Pannonian basin), abstracted for municipal water supplies of Kikinda, Novi Knezevac and Djala, has attracted attention of these authors. Our paper attempts to interpret the variation in the chemical composition of ground water and the cause of the variation by the interaction of ground water and rocks forming the aquifers on the case example of the water supply sources for the three mentioned towns. With respect to the depth and lithology of the aquifers, we interpret the varied chemical compositions of waters in the mentioned sources as a consequence of natural factors (geological environment), geological relationships and hydrogeological conditions.  相似文献   

11.
A regional scale, showcase saline aquifer CO2 storage model from the North German Basin is presented, predicting the regional pressure impact of a small industrial scale CO2 storage operation on its surroundings. The intention of the model is to bridge the gap between generic and site-specific, studying the role of fluid flow boundary conditions and petrophysical parameters typically found in the North German Basin. The numerical simulation has been carried out using two different numerical simulators, whose results matched well. The most important system parameters proved to be the model’s hydrological boundary conditions, rock compressibility, and permeability. In open boundary aquifers, injection-induced overpressures dissipate back to hydrostatic level within a few years. If a geological flow barrier is present on at least one side of the aquifer, pressure dissipation is seriously retarded. In fully closed compartments, overpressures can never fully dissipate, but equilibrate to a compartment-wide remnant overpressure. At greater distances to the injection well, maximum fluid pressures are in the range of a few bar only, and reached several years to decades after the end of the actual injection period. This is important in terms of long-term safety and monitoring considerations. Regional pressure increase impacts the storage capacities of neighbouring sites within hydraulically connected units. It can be concluded that storage capacities may be seriously over- or underestimated when the focus is on a single individual storage site. It is thus necessary to assess the joint storage capacities and pressure limitations of potential sites within the same hydraulic unit.  相似文献   

12.
Deep saline aquifers still remain a significant option for the disposal of large amounts of CO2 from the atmosphere as a means of mitigating global climate change. The small scale Carbon Capture and Sequestration demonstration project in Ordos Basin, China, operated by the Shenhua Group, is the only one of its kind in Asia, to put the multilayer injection technology into practice. This paper aims at studying the influence of temperature, injection rate and horizontal boundary effects on CO2 plume transport in saline formation layers at different depths and thicknesses, focusing on the variations in CO2 gas saturation and mass fraction of dissolved CO2 in the formation of brine in the plume’s radial three-dimensional field around the injection point, and interlayer communication between the aquifer and its confining beds of relatively lower permeability. The study uses the ECO2N module of TOUGH2 to simulate flow and pressure configurations in response to small-scale CO2 injection into multilayer saline aquifers. The modelling domain involves a complex multilayer reservoir–caprock system, comprising of a sequence of sandstone aquifers and sealing units of mudstone and siltstone layers extending from the Permian Shanxi to the Upper Triassic Liujiagou formation systems in the Ordos Basin. Simulation results indicate that CO2 injected for storage into deep saline aquifers cause a significant pressure perturbation in the geological system that may require a long duration in the post-injection period to establish new pressure equilibrium. The multilayer simultaneous injection scheme exhibits mutual interference with the intervening sealing layers, especially when the injection layers are very close to each other and the corresponding sealing layers are thin. The study further reveals that injection rate and temperature are the most significant factors for determining the lateral and vertical extent that the CO2 plume reaches and which phase and amount will exist at a particular time during and after the injection. In general, a large number of factors may influence the CO2–water fluid flow system considering the complexity in the real geologic sequence and structural configurations. Therefore, optimization of a CO2 injection scheme still requires pursuance of further studies.  相似文献   

13.
Abundant veins filled by calcite, celestite and pyrite were found in the core of a 719 m deep borehole drilled in Oftringen near Olten, located in the north-western Molasse basin, close to the thrust of the Folded Jura. Host rocks are calcareous marl, argillaceous limestone and limestone of the Dogger and Malm. The δ18O values of vein calcite are lower than in host rock carbonate and, together with microthermometric data from fluid inclusions in vein calcite, indicate precipitation from a seawater-dominated fluid at average temperatures of 56–68°C. Such temperatures were reached at the time of maximum burial of the sedimentary pile in the late Miocene. The depth profile of δ13C and 87Sr/86Sr values and Sr content of both whole-rock carbonate and vein calcite show marked trends towards negative δ13C, high 87Sr/86Sr, and low Sr content in the uppermost 50–150 m of the Jurassic profile (upper Oxfordian). The 87Sr/86Sr of vein minerals is generally higher than that of host rock carbonate, up to very high values corresponding to Burdigalian seawater (Upper Marine Molasse, Miocene), which represents the last marine incursion in the region. No evidence for internally derived radiogenic Sr (clay minerals) has been found and so an external source is required. S and O isotope composition of vein celestite and pyrite can be explained by bacterial reduction of Miocene seawater sulphate. The available data set suggests the vein mineralization precipitated from descending Burdigalian seawater and not from a fluid originating in the underlying Triassic evaporites.  相似文献   

14.
CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.  相似文献   

15.
The Koyna River basin in India drew the attention of geoscientists after an earthquake (magnitude 7) in 1967. Since then, detailed geological, tectonic, and seismic investigations of this river basin have been carried out by several workers. However, very little study has been done on its hydrogeological framework. The present work aims at filling this gap. Basalts, laterites, alluvium, soils, and talus deposits form shallow unconfined aquifers, with transmissivity of 27–135 m2/d and a regional specific yield of 0.012. In shallow basaltic aquifers, the lower part of the highly weathered and highly jointed horizon above, and the poorly weathered and highly jointed horizon below, form the most potential zone for groundwater occurrence. Well yields in the deeper basaltic aquifers are directly related to the occurrence of lineaments, whereas at a shallower level they are related to geomorphic features. Spring discharges are highly dependent on their source aquifers and areas of recharge. They have a mean winter discharge of 46 m3/d and a summer discharge of 28 m3/d. Chemically, groundwaters are dominated by alkaline earths (Ca2+, Mg2+) and weak acids (HCO3 , CO3 ); they are calcium-bicarbonate type (53%) and calcium-magnesium-bicarbonate type (27%) at shallower levels; and calcium-magnesium-bicarbonate type (29%), sodium-bicarbonate type (24%), calcium-bicarbonate type (19%), and calcium-magnesium-sodium-bicarbonate type (19%) in deeper aquifers. The Koyna River basin is characterized by both scarcity and abundance of groundwater. In the water-scarce areas in the dissected plateaus, artificial recharge of aquifers through construction of several recharge structures at suitable locations is highly recommended. In the water-abundant areas in the central valley, on the other hand, expanded consumptive use of water resources is encouraged. Electronic Publication  相似文献   

16.
Earliest rhinocerotoids from Switzerland are reviewed on the basis of dental remains from the earliest Oligocene north-central Jura Molasse localities of Bressaucourt (MP21/22) and Kleinblauen (top MP22). The record in Bressaucourt is restricted to Ronzotherium and Cadurcotherium, representing Switzerland’s oldest, well-dated post-“Grande Coupure” large mammal association, the only occurrence of Cadurcotherium, and the earliest occurrence of rhinocerotoids in Switzerland. The correlation with high-resolution stratigraphy of this locality permitted a dating of the fauna to ca. 32.6 Ma, less than a million years after the “Grande Coupure” event. The rhinocerotoids of Kleinblauen are represented by Epiaceratherium, Ronzotherium and Eggysodon. With the presence of Plagiolophus ministri, they are the only well-dated Swiss post-“Grande Coupure” large mammal assemblage with the persistence of an endemic pre-“Grande Coupure” taxon. Moreover, the coexistence of Epiaceratherium magnum and E. aff. magnum could indicate a new speciation within the Epiaceratherium lineage around the top of MP22. The rhinocerotoid associations of Bressaucourt with RonzotheriumCadurcotherium on the western side of the southernmost Rhine Graben area, and Kleinblauen with EpiaceratheriumRonzotheriumEggysodon on the eastern side, respectively, reveal a possible environmental barrier constituted by the Early Oligocene Rhenish sea and its eventual connection with the Perialpine sea. This one could have separated an arid area in central-eastern France from a humid area in Switzerland and Germany. These results, combined with the repartition of similar rhinocerotoid associations in Western Europe, also give new insights into an alternative earliest Oligocene dispersal route of rhinocerotoids from Asia towards Western Europe via North Italy.  相似文献   

17.
Re-evaluation of the river history, palaeosurface levels and exhumation history in northern Switzerland for the last 10 million years reveals that distinct morphotectonic events about 4.2 and 2.8 million years ago (Ma) caused major reorganisation of river networks and morphosculpture. As a result of the earlier formation of the Swiss Jura, potential relief energy in the piggy-back North Alpine Foreland Basin (NAFB) of northern central Switzerland south of the Jura fold belt was built up after 11–10 Ma. It was suddenly released by river capture at about 4.2 Ma when the Aare-Danube was captured by a tributary of the Rhône-Doubs river system which rooted southeast of the Black forest. This event triggered rapid denudation of weakly consolidated Molasse sediments, in the order of about 1 km, as constrained by apatite fission track data from drillholes in the NAFB. Likely mechanisms of river capture are (a) headward erosion of Rhône-Doubs tributaries, (b) uplift and rapidly increasing erosion of the Swiss Alps after about 5.3 Ma, and (c) gravel aggradation at the eastern termination of the Jura fold belt in the course of eastward and northward tilt of the piggy-back NAFB. A morphotectonic event between 4.2 and 2.5 Ma, probably at about 2.8 Ma, caused a phase of planation, accompanied by local gravel aggradation and temporary storage of Alpine debris. Between 2.8 and 2.5 Ma, the Aare-Rhône river system is cannibalised by the modern Rhine River, the latter later connecting with the Alpine Rhine River.  相似文献   

18.
19.
CO2 inclusions with density up to 1,197 kg m−3 occur in quartz–stibnite veins hosted in the low-grade Palaeozoic basement of the Gemericum tectonic unit in the Western Carpathians. Raman microanalysis corroborated CO2 as dominant gas species accompanied by small amounts of nitrogen (<7.3 mol%) and methane (<2.5 mol%). The superdense CO2 phase exsolved from an aqueous bulk fluid at temperatures of 183–237°C and pressures between 1.6 and 3.5 kbar, possibly up to 4.5 kbar. Low thermal gradients (∼12–13°C km−1) and the CO2–CH4–N2 fluid composition rule out a genetic link with the subjacent Permian granites and indicate an external, either metamorphogenic (oxidation of siderite, dedolomitization) or lower crustal/mantle, source of the ore-forming fluids.According to microprobe U–Pb–Th dating of monazite, the stibnite-bearing veins formed during early Cretaceous thrusting of the Gemeric basement over the adjacent Veporic unit. The 15- to 18-km depth of burial estimated from the fluid inclusion trapping PT parameters indicates a 8- to 11-km-thick Upper Palaeozoic–Jurassic accretionary complex overlying the Gemeric basement and its Permo-Triassic autochthonous cover.  相似文献   

20.
This work studied the effect of completion techniques and reservoir heterogeneity on CO2 storage and injectivity in saline aquifers using a compositional reservoir simulator, CMG-GEM. Two reservoir models were built based on the published data to represent a deep saline aquifer and a shallow aquifer. The effect of various completion conditions on CO2 storage was then discussed, including partial perforation of the reservoir net pay (partial completion), well geometry, orientation, location, and length. The heterogeneity effect was addressed by considering three parameters: mean permeability, the vertical to horizontal permeability ratio, and permeability variation. Sensitivity analysis was carried out using iSIGHT software (design of experiments) to determine the dominant factors affecting CO2 storage capacity and injectivity. Simulation results show that the most favorable option is the perforation of all layers with horizontal wells 250–300 m long set in the upper layers. Mean permeability has the most effect on CO2 storage capacity and injectivity; k v/k h affects CO2 injectivity storage capacity more than permeability variation, V k. More CO2 can be stored in the heterogeneous reservoirs with low mean permeability; however, high injectivity can be achieved in the uniform reservoirs with high mean permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号