首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

2.
Laura Kerber  James W. Head 《Icarus》2010,206(2):669-684
The Medusae Fossae Formation (MFF), covering about 2.1 × 106 km2 (with an estimated volume of 1.4 × 106 km3) and straddling the equatorial region of Mars east of Tharsis, has historically been mapped and dated as Amazonian in age. Analysis of the MFF using a range of new observations from recent mission data at multiple resolutions reveals evidence that the formation is older than previously hypothesized, with parts of the MFF having formed in the Hesperian and parts having been reworked and reformed throughout the Amazonian, up to the present. Ancient outcroppings of the MFF, edged with jagged yardangs, became a “mold” for embaying Hesperian-aged lavas. The erosion of the MFF left solidified lava “casts” in the embaying lava unit. This lava edge morphology permits the identification of ancient contacts between the MFF and Hesperian-aged lava terrain. Additionally, the flanking fan of the Hesperian-aged Apollinaris Patera volcano embays the formation at its foot, indicating that parts of the MFF were formed in the Hesperian. Erosion has erased and inverted many of the superposed craters in the region, showing that very young Amazonian ages derived from impact crater size-frequency distributions are resurfacing ages, and not emplacement ages. We find abundant evidence that the formation is extremely mobile and continuously reworked. We conclude that a significant part of the MFF may have originally been emplaced in the Hesperian. These observations place new constraints on the mode of origin of the MFF.  相似文献   

3.
Joseph Levy  James W. Head 《Icarus》2010,209(2):390-404
Hypotheses accounting for the formation of concentric crater fill (CCF) on Mars range from ice-free processes (e.g., aeolian fill), to ice-assisted talus creep, to debris-covered glaciers. Based on analysis of new CTX and HiRISE data, we find that concentric crater fill (CCF) is a significant component of Amazonian-aged glacial landsystems on Mars. We present mapping results documenting the nature and extent of CCF along the martian dichotomy boundary over −30 to 90°E latitude and 20-80°N longitude. On the basis of morphological analysis we classify CCF landforms into “classic” CCF and “low-definition” CCF. Classic CCF is most typical in the middle latitudes of the analysis area (∼30-50°N), while a range of degradation processes results in the presence of low-definition CCF landforms at higher and lower latitudes. We evaluate formation mechanisms for CCF on the basis of morphological and topographic analyses, and interpret the landforms to be relict debris-covered glaciers, rather than ice-mobilized talus or aeolian units. We examine filled crater depth-diameter ratios and conclude that in many locations, hundreds of meters of ice may still be present under desiccated surficial debris. This conclusion is consistent with the abundance of “ring-mold craters” on CCF surfaces that suggest the presence of near-surface ice. Analysis of breached craters and distal glacial deposits suggests that in some locations, CCF-related ice was once several hundred meters higher than its current level, and has sublimated significantly during the most recent Amazonian. Crater counts on ejecta blankets of filled and unfilled craters suggests that CCF formed most recently between ∼60 and 300 Ma, consistent with the formation ages of other martian debris-covered glacial landforms such as lineated valley fill (LVF) and lobate debris aprons (LDA). Morphological analysis of CCF in the vicinity of LVF and LDA suggests that CCF is a part of an integrated LVF/LDA/CCF glacial landsystem. Instances of morphological continuity between CCF, LVF, and LDA are abundant. The presence of formerly more abundant CCF ice, coupled with the integration of CCF into LVF and LDA, suggests the possibility that CCF represents one component of the significant Amazonian mid-latitude glaciation(s) on Mars.  相似文献   

4.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

5.
We have used the Mars Global Surveyor Mars Orbiter Camera Wide Angle (MGS MOC WA) dataset to study albedo trends on the martian northern residual cap. Six study regions were selected, the Chasma Boreale source region, three regions near the center of the cap (“fish hook” region, latitude = 87°; “bottle opener” region, latitude = 87°, “steep-shallow” region, latitude = 85°), and two lower latitude regions (crater, latitude = 77°, and polar outlier, latitude = 82°), and the albedos of these six regions were examined. These regions were chosen due to their good temporal coverage in the MOC dataset, as well as having been studied by other researchers (Bass et al., 2000, Icarus 144, 382-396; Calvin and Titus, 2004, Lunar Planet. Sci. XXXV, Abstract 1455). The picture which emerges is complex. Most areas experience a combination of darkening and brightening through the northern summer; only one area consistently brightens (the polar outlier region). A good deal of interannual repeatability in each region's albedo behavior is seen, however. Possible causes for the observed complex behaviors include dust deposition from late summer storms, sintering of frost grains over the course of the summer, and cold trapping of volatiles on bright, cold surfaces.  相似文献   

6.
We present observations and models that together explain many hallmarks of the structure and growth of small impact craters forming in targets with aligned fractures. Endurance Crater at Meridiani Planum on Mars (diameter ≈ 150 m) formed in horizontally-layered aeolian sandstones with a prominent set of wide, orthogonal joints. A structural model of Endurance Crater is assembled and used to estimate the transient crater planform. The model is based on observations from the Mars Exploration Rover Opportunity: (a) bedding plane orientations and layer thicknesses measured from stereo image pairs; (b) a digital elevation model of the whole crater at 0.3 m resolution; and (c) color image panoramas of the upper crater walls. This model implies that the crater’s current shape was mostly determined by highly asymmetric excavation rather than long-term wind-mediated erosion. We show that modal azimuths of conjugate fractures in the surrounding rocks are aligned with the square component of the present-day crater planform, suggesting excavation was carried farther in the direction of fracture alignments. This was previously observed at Barringer Crater in Arizona and we show the same relationship also holds for Tswaing Crater in South Africa. We present models of crater growth in which excavation creates a “stellate” transient cavity that is concave-cuspate in planform. These models reproduce the “lenticular-crescentic” layering pattern in the walls of some polygonal impact craters such as Endurance and Barringer Craters, and suggest a common origin for tear faults and some crater rays. We also demonstrate a method for detailed error analysis of stereogrammetric measurements of bedding plane orientations.  相似文献   

7.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

8.
The issue of crater retention age estimates on planetary surfaces is discussed with an attempt to quantify the effect of overlapping primary and secondary impact crater populations in restricted crater diameter ranges. The approach to this problem is illustrated with a simple model production function where the secondary crater input is artificially enhanced. Extrapolation of such a secondary crater model distribution to a global record results in extraordinarily high crater frequencies that do not exist on Mars, and implies the need of detailed studies of the size-frequency distribution for remote secondary craters, to date poorly known. A key case, the martian crater Zunil and its secondary crater field, illustrate that reasonable predictions for the secondary crater size-frequency distribution at small (<100 m) crater diameters affected the standard model crater retention age for the Cerberus plains less than the statistical uncertainty. These observations show that age determination based on appropriate crater counting statistics is valid in a wide primary crater diameter range.  相似文献   

9.
Self-organised patterns of stone stripes, polygons, circles and clastic solifluction lobes form by the sorting of clasts from fine-grained sediments in freeze-thaw cycles. We present new High Resolution Imaging Science Experiment (HiRISE) images of Mars which demonstrate that the slopes of high-latitude craters, including Heimdal crater - just 25 km east of the Phoenix Landing Site - are patterned by all of these landforms. The order of magnitude improvement in imaging data resolution afforded by HiRISE over previous datasets allows not only the reliable identification of these periglacial landforms but also shows that high-latitude fluviatile gullies both pre- and post-date periglacial patterned ground in several high-latitude settings on Mars. Because thaw is inherent to the sorting processes that create these periglacial landforms, and from the association of this landform assemblage with fluviatile gullies, we infer the action of liquid water in a fluvio-periglacial context. We conclude that these observations are evidence of the protracted, widespread action of thaw liquids on and within the martian regolith. Moreover, the size frequency statistics of superposed impact craters demonstrate that this freeze-thaw environment is, at least in Heimdal crater, less than a few million years old. Although the current martian climate does not favour prolonged thaw of water ice, observations of possible liquid droplets on the strut of the Phoenix Lander may imply significant freezing point depression of liquids sourced in the regolith, probably driven by the presence of perchlorates in the soil. Because perchlorates have eutectic temperatures below 240 K and can remain liquid at temperatures far below the freezing point of water we speculate that freeze-thaw involving perchlorate brines provides an alternative “low-temperature” hypothesis to the freeze-thaw of more pure water ice and might drive significant geomorphological work in some areas of Mars. Considering the proximity of Heimdal crater to the Phoenix Landing Site, the presence of such hydrated minerals might therefore explain the landforms described here. If this is the case then the geographical distribution of martian freeze-thaw landforms might reflect relatively high temperatures (but still below 273 K) and the locally elevated concentration of salts in the regolith.  相似文献   

10.
We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N, 90°E) and larger by the same amount at the apex of motion (0°N, 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old, and the surface of Venus to be 240 Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5 Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.  相似文献   

11.
McEwen et al. (McEwen, A.S., Preblich, B.S., Turtle, E.P., Artemieva, N.A., Golombek, M.P., Hurst, M., Kirk, R.L., Burr, D.M., Christensen, P. [2005]. Icarus 176, 351-381) developed a useful test for the internal consistency of crater-count chronometry systems. They argued that certain multi-kilometer, fresh-looking martian craters with prominent rays should be the youngest or near-youngest craters in their size range. The “McEwen et al. test” is that the ages determined from crater densities of the smallest superimposed craters (typically diameter D ∼ 5-20 m) should thus be comparable to the expected formation intervals of the host primary. McEwen et al. concluded from MOC data that crater chronometry failed this test by factors of 700-2000. We apply HiRISE and other imagery to eight different young craters in order to re-evaluate their arguments. We use existing crater chronology systems as well as the reported observed production rate of 16 m craters (Malin, M.C., Edgett, K., Posiolova, L., McColley, S., Noe Dobrea, E. [2006]. Science 314, 1573-1557; Hartmann, W.K., Quantin, C., Mangold, N. [2007]. Icarus 186, 11-23; Kreslavsky [2007]. Seventh International Conference on Mars, 3325). Every case passes the McEwen et al. test. We conclude that the huge inconsistencies suggested by McEwen et al. are spurious. Many of these craters show evidence of impact into ice-rich material, and appear to have ice-flow features and sublimation pits on their floors. As production rate data improve, decameter-scale craters will provide a valuable way of dating these young martian geological formations and the processes that modify them.  相似文献   

12.
Gale Crater contains a 5.2 km-high central mound of layered material that is largely sedimentary in origin and has been considered as a potential landing site for both the MER (Mars Exploration Rover) and MSL (Mars Science Laboratory) missions. We have analyzed recent data from Mars Reconnaissance Orbiter to help unravel the complex geologic history evidenced by these layered deposits and other landforms in the crater. Results from imaging data from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) confirm geomorphic evidence for fluvial activity and may indicate an early lacustrine phase. Analysis of spectral data from the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument shows clay-bearing units interstratified with sulfate-bearing strata in the lower member of the layered mound, again indicative of aqueous activity. The formation age of the layered mound, derived from crater counts and superposition relationships, is ∼3.6-3.8 Ga and straddles the Noachian-Hesperian time-stratigraphic boundary. Thus Gale provides a unique opportunity to investigate global environmental change on Mars during a period of transition from an environment that favored phyllosilicate deposition to a later one that was dominated by sulfate formation.  相似文献   

13.
S. Bouley  R.A. Craddock 《Icarus》2010,207(2):686-698
Martian valley networks provide the best evidence that the climate on Mars was different in the past. Although these features are located primarily in heavily cratered terrain of Noachian age (>3.7 Ga), the ages of the features and the time when they were active is not well understood. From superposed craters several recent global studies determined that most valley networks formed during the Late Noachian to Early Hesperian; however, there were some disparities between the techniques. In this study, our principal objective was to test the reliability of the different age-dating techniques to better understand their accuracy and limitations. We applied these techniques to Parana Valles using a variety of high-resolution images taken from different instruments that allow us to identify smaller craters (D > 125 m) while providing sufficient coverage to support a statistically reliable sampling of crater populations, which is necessary to reduce the uncertainties in age determination. Our results indicate that Parana Valles formed during the Early Hesperian Period but that the crater density (D > 353 m) is heterogeneous inside the Parana Valles basin. The crater population decreases from the headwaters downstream recording a resurfacing event that is most likely related to the erosion of downstream sub-basins. The terrain near the source area is Late Noachian to Early Hesperian in age while terrains closer to the outlet are Early to Late Hesperian in age. Crater densities (D > 125 m) inside the valley are also heterogeneous and record several resurfacing events on the valley floor. Where the width of the valley network narrows to <2 km we found evidence of an Amazonian age eolian deposit that is a relatively thin layer of only few meters that was probably deposited as a result of topographic influences. Our results validate the reliability of several proposed age-dating techniques, but we also determined the accuracy and applicability of these techniques. Our results also demonstrate that crater populations can be used to not only determine the relative ages of valley networks, but also to map the distribution of sedimentary materials and the extent of resurfacing events that occurred after valley network formation.  相似文献   

14.
Alberto G. Fairén 《Icarus》2010,208(1):165-48
Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the “warm and wet” Mars) or on local thermal energy sources acting in a global freezing climate (the “cold and dry” Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ∼245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ∼225 K). During times with a thin atmosphere and even lesser temperatures (under ∼225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a “cold and wet” planet for a substantial part of its geological history.  相似文献   

15.
The relation between the size and velocity of impact crater ejecta has been studied by both laboratory experiments and numerical modeling. An alternative method, used here, is to analyze the record of past impact events, such as the distribution of secondary craters on planetary surfaces, as described by Vickery (Icarus 67 (1986) 224; Geophys. Res. Lett. 14 (1987) 726). We first applied the method to lunar images taken by the CLEMENTINE mission, which revealed that the size-velocity relations of ejecta from craters 32 and 40 km in diameter were similar to those derived by Vickery for a crater 39 km in diameter. Next, we studied the distribution of small craters in the vicinity of kilometer-sized craters on three images from the Mars Orbiter Camera (MOC) on board the Mars Global Surveyor (MGS). If these small craters are assumed to be secondaries ejected from the kilometer-sized crater in each image, the ejection velocities are of hundreds of meters per second. These data fill a gap between the previous results of Vickery and those of laboratory studies.  相似文献   

16.
Stephen D. Eckermann  Jun Ma 《Icarus》2011,211(1):429-442
Using a Curtis-matrix model of 15 μm CO2 radiative cooling rates for the martian atmosphere, we have computed vertical scale-dependent IR radiative damping rates from 0 to 200 km altitude over a broad band of vertical wavenumbers ∣m∣ = 2π(1-500 km)−1 for representative meteorological conditions at 40°N and average levels of solar activity and dust loading. In the middle atmosphere, infrared (IR) radiative damping rates increase with decreasing vertical scale and peak in excess of 30 days−1 at ∼50-80 km altitude, before gradually transitioning to scale-independent rates above ∼100 km due to breakdown of local thermodynamic equilibrium. We incorporate these computed IR radiative damping rates into a linear anelastic gravity-wave model to assess the impact of IR radiative damping, relative to wave breaking and molecular viscosity, in the dissipation of gravity-wave momentum flux. The model results indicate that IR radiative damping is the dominant process in dissipating gravity-wave momentum fluxes at ∼0-50 km altitude, and is the dominant process at all altitudes for gravity waves with vertical wavelengths ?10-15 km. Wave breaking becomes dominant at higher altitudes only for “fast” waves of short horizontal and long vertical wavelengths. Molecular viscosity plays a negligible role in overall momentum flux deposition. Our results provide compelling evidence that IR radiative damping is a major, and often dominant physical process controlling the dissipation of gravity-wave momentum fluxes on Mars, and therefore should be incorporated into future parameterizations of gravity-wave drag within Mars GCMs. Lookup tables for doing so, based on the current computations, are provided.  相似文献   

17.
The composition and detailed morphology of dome-shaped features located in western Arcadia Planitia and just west of Utopia Planitia were examined in this study utilizing data from Mars Reconnaissance Orbiter and Mars Odyssey sensors. The domes have diameters averaging 1.5 km and heights averaging 160 m, and are generally dark-toned, although some are lighter toned or have split dark and light-toned surfaces. The domes are surrounded by annular deposits comprising, with increasing distance from the domes, dark-toned aprons, light-toned aureoles, and dark-toned aureoles. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data over several areas in the western Arcadia region show that spectra from the flanks of several domes have 1 and 2 μm absorption features consistent with the presence of olivine and a high-Ca pyroxene, nominally augite. Modified Gaussian Model (MGM) analysis of these spectra indicates Fe-rich olivine compositions. The tops of domes and the aprons surrounding many domes have negative sloping flat spectra in the near infrared, which is consistent with tachylite-rich, glassy compositions. High Resolution Imaging Science Experiment (HiRISE) images over several domes indicate that relatively high thermal inertia values associated with the tops of domes can be attributed to boulder strewn surfaces. HiRISE images also reveal that light-toned aureoles around domes consist of crenulated ground resembling “brain terrain” textures previously described for ice-rich concentric crater fill elsewhere on the northern plains. The plains surrounding the domes also display lineations that are interpreted to be lava channels or tubes. The combination of volcanic and ice-related features are consistent with the domes having formed as cryptodomes in the near sub-surface. We suggest that the domes could be basaltic in composition if the magmas were degassed and/or highly crystallized, and thus more viscous than typical basaltic magmas. The intrusion of these magmas into an ice-rich horizon would have produced a pervasively jointed chilled margin on the domes, which, once the domes were exposed, would have mechanically weathered to form the dark aprons. The domes could have served as local centers for ice accumulation during periods of high orbital obliquity, which ultimately would have led to the formation of the “brain terrain” surrounding the features. The domes represent late stage volcanic products on the northern plains of Mars and associated features provide more evidence for the role that ice accumulation and modification has played in recent martian history.  相似文献   

18.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

19.
Automatic detection of sub-km craters in high resolution planetary images   总被引:4,自引:0,他引:4  
Impact craters are among the most studied geomorphic planetary features because they yield information about the past geological processes and provide a tool for measuring relative ages of observed geologic formations. Surveying impact craters is an important task which traditionally has been achieved by means of visual inspection of images. The shear number of smaller craters present in high resolution images makes visual counting of such craters impractical. In this paper we present a method that brings together a novel, efficient crater identification algorithm with a data processing pipeline; together they enable a fully automatic detection of sub-km craters in large panchromatic images. The technical details of the method are described and its performance is evaluated using a large, 12.5 m/pixel image centered on the Nanedi Valles on Mars. The detection percentage of the method is ∼70%. The system detects over 35,000 craters in this image; average crater density is , but localized spots of much higher crater density are present. The method is designed to produce “million craters” global catalogs of sub-km craters on Mars and other planets wherever high resolution images are available. Such catalogs could be utilized for deriving high spatial resolution and high temporal precision stratigraphy on regional or even planetary scale.  相似文献   

20.
A.V. Pathare  M.R. Balme  M.C. Towner 《Icarus》2010,209(2):851-853
Competing hypotheses for the diameter dependence of terrestrial and martian dust devil frequency are assessed using new field observations from two sites in the southwestern United States. We show that at diameters less than 12 m, our observed dust devil size-frequency distributions are better fit by an exponential function than by a power law formulation, and discuss the implications for larger dust devils on Earth and Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号