首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of protoplanetary disks is regulated by its interaction with the central forming star. This interaction happens through accretion of matter from the disk onto the star, and its most significant signatures are the continuum excess in the UV part of the spectrum and the presence of various emission lines. With the VLT/X-Shooter spectrograph, the excess emission in the UV due to accretion can being studied simultaneously with the signatures in the visible and in the near-infrared, giving a simultaneous and complete view of this phenomenon. Here we present some results we obtained using observation and modeling of the UV-excess in young forming stars, which are: (1) the determination of stellar and accretion properties in candidate older accreting young stellar objects and (2) the study of the star-disk interaction in the early stages of planetary system evolution in transitional disk systems.  相似文献   

2.
Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation: The physics of the ISM. Stars form from dense molecular clouds that contain ∼ 30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system – the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (∼ 65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass. The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion–outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1 AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1 AU) from its parent star. The temperature of the accretion–outflow engine is between 3000 and 10 7 K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths. The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by the strong UV radiation field produced by the star and the accretion–outflow engine. Absorption spectroscopy provides the most sensitive tool for determining the properties of the circumstellar gas as well as the characteristics of the atmospheres of the inner planets transiting the stellar disk. UV radiation also pumps the electronic transitions of the most abundant molecules (H 2, CO, etc.) that are observed in the UV.Here we argue that access to the UV spectral range is essential for making progress in this field, since the resonance lines of the most abundant atoms and ions at temperatures between 3000 and 300 000 K, together with the electronic transitions of the most abundant molecules (H 2, CO, OH, CS, S 2, CO 2 +, C 2, O 2, O3, etc.) are at UV wavelengths. A powerful UV-optical instrument would provide an efficient mean for measuring the abundance of ozone in the atmosphere of the thousands of transiting planets expected to be detected by the next space missions (GAIA, Corot, Kepler, etc.). Thus, a follow-up UV mission would be optimal for identifying Earth-like candidates.  相似文献   

3.
The evolution of a stellar, initially dipole type magnetosphere interacting with an accretion disk is investigated using numerical ideal MHD simulations. The simulations follow several 1000 Keplerian periods of the inner disk (for animated movies see http://www.aip.de~cfendt).Our model prescribes a Keplerian disk around a rotating star as a fixed boundary condition. The initial magnetic field distribution remains frozen into the star and the disk. The mass flow rate into the corona is fixed for both components. The initial dipole type magnetic field develops into a spherically radial outflow pattern with two main components – a disk wind and a stellar wind – both evolving into a quasi-stationary final state. A neutral field line divides both components, along which small plasmoids are ejected in irregular time intervals. The half opening angle of the stellar wind cone varies from 30° to55° depending on the ratio of the mass flow rates of disk wind and stellar wind. The maximum speed of the outflow is about the Keplerian speed at the inner disk radius. An axial jet forms during the first decades of rotations. However, this feature does not survive on the very long time scale and a pressure driven low velocity flow along the axis evolves. Within a cone of 15° along the axis the formation of knots may be observed if the stellar wind is weak. With the chosen mass flow rates and field strength we see almost no indication for a flow self-collimation. This is due to the weak net poloidal electric current in the magnetosphere which is in difference to typical jet models.  相似文献   

4.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

5.
Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.  相似文献   

6.
An alternative non-infall model for the chemical evolution in the solar neighbourhood is proposed. The evolution of the disk is divided into two phases. In phaseA, the magnetic field and the gas viscosity produced an outward flux of gas, forming and maintaining the ring observed today. This flux balanced the star formation in the ring. The number of stars increased until the beginning of phaseB, during which stellar viscosity generated an inward flux of stars towards the inner disk, while the magnetic fields continued supplying gas to the ring. The combination of these two effects brought the ring to a quasi-steady state, with a constant mass of gas and stars which we assume has continued till the present. A coherent picture is obtained in which the observational restrictions are explained without introducing any arbitrary hypothesis. The inward flux of stars in phaseB has transported the metal-poor G-dwards to the inner region, thus explaining their absence in the solar neighbourhood.  相似文献   

7.
Polar crown prominences, that partially circle the Sun’s poles between 60° and 70° latitude, are made of chromospheric plasma. We aim to diagnose the 3D dynamics of a polar crown prominence using high-cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304, 171, and 193 Å and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195 Å. Using time series across specific structures, we compare flows across the disk in 195 Å with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns that are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171 Å two-colour images. We also observe intermittent but repetitious flows with velocity 15 km?s?1 in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament-linkage model.  相似文献   

8.
The engine that powers pre-main-sequence micro-jets is still unknown and remains a fundamental open question in star formation. The engine can be located solely on the inner disk or in the interaction of the inner disk with the star. In order to ease interpretation problems, imaging the jet engine is the ideal probe to disentangle between the old models and shed evidence for new ones. In this paper, we analyse the feasability of imaging bright southern targets, and show that even at low SNR, accurate image reconstructionis still possible with high contrast. However, the small number of ATs requires a fast reconfigurable array. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua (Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈?2 to 30 R with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈?30 R to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes’ deflection occurs predominantly below 30 R, a significant amount of deflection and rotation happens between 30 R and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates over the magnetic interaction with the HCS in the inner heliosphere at least during solar-minimum conditions.  相似文献   

10.
We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only \({\sim }1\,\%\) although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease allowing period ratios to increase to become more distant from resonances as the system approached its final state in the inner regions of the protoplanetary disk.  相似文献   

11.
According to the two-infall model for the chemical evolution of the Galaxy the halo and bulge formed on a relatively short timescale (0.8–1.0 Gyr) out of the first infall episode, whereas the disk accumulated much more slowly and ‘inside-out’ during a second independent infall episode. We explored the effects of a threshold in the star formation process, during both the halo and disk phases. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar and star formation rate distributions along the disk. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We predict that the abundance gradients along the Galactic disk have increased in time during the first billion years of the disk evolution and remained almost constant in the last ~5Gyrs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
Stellar magnetic fields govern key aspects of the evolution of a young star, from controlling accretion to regulating the angular momentum evolution of the system. Spectro‐polarimetric studies of T Tauri stars have revealed a surprising range of magnetic field topologies. Meanwhile multi‐wavelength campaigns have probed T Tauri star systems from stellar photosphere to inner disk, allowing us to study magnetospheric accretion in unprecedented detail. We review recent results and discuss their implications for understanding the evolution of young stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Yan  Yihua  Aschwanden  Markus J.  Wang  Shujuan  Deng  Yuanyong 《Solar physics》2001,204(1-2):27-40
The finite energy force-free magnetic fields of the active region NOAA 9077 on 14 July 2000 above the photosphere were reconstructed. We study the evolution of the 3D magnetic field structures in AR 9077 and compare the reconstructed field lines with TRACE EUV 171 Å flare loops during the flare maximum, which confirms the process that flaring loops extended from lower sheared level to higher arcades. We also demonstrate the 3D magnetic field evolution before the 3B/X5.7 flare on 14 July and the magnetic structure after the flare on 15 July. This shows that the helical magnetic structures were significantly changed, suggesting that the flux rope was indeed erupted during the energetic flare at 10:24 UT on 14 July.  相似文献   

14.
The Fabry-Perot scanning interferometer mounted on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences is used to study the distribution and kinematics of ionized gas in the peculiar galaxy Arp 212 (NGC 7625, IIIZw 102). Two kinematically distinct subsystems—the inner disk and outer emission filaments—are found within the optical radius of the galaxy. The first subsystem, at galactocentric distances r < 3.5 kpc, rotates in the plane of the stellar disk. The inner part of the ionized-gas disk (r<1.5–2 kpc) exactly coincides with the previously known disk consisting of molecular gas. The second subsystem of ionized gas is located at galactocentric distances 2–6 kpc. This subsystem rotates in a plane tilted by a significant angle to the stellar disk. The angle of orbital inclination in the outer disk increases with galactocentric distance and reaches 50° at r ≈ 6 kpc. The ionized fraction of the gaseous disk does not show up beyond this galactocentric distance, but we believe that the HI disk continues to warp and approaches the plane that is polar with respect to the inner disk of the galaxy. Hence Arp 212 can be classified as a galaxy with a polar ring (or a polar disk). The observed kinematics of the ionized and neutral gas can be explained assuming that the distribution of gravitational potential in the galaxy is not spherically symmetric. Most probably, the polar ring have formed via accretion of gas from the dwarf satellite galaxy UGC 12549.  相似文献   

15.
This paper presents the results of a comparison between observations of coronal holes in UV (SOHO EIT) and radio emission (17, 5.7 GHz, 327 and 150.9 MHz, from NoRH, SSRT and Nançay radioheliographs), and solar wind parameters, from ACE spacecraft data over the period 12 March?–?31 May 2007. The increase in the solar wind velocity up to ~?600 km?s?1 was found to correlate with a decrease in the UV flux in the central parts of the solar disk. A connection between the parameters of the radio emission from three different layers of the solar atmosphere and the solar wind velocity near the Earth’s orbit was discovered. Such a connection is suggestive of a common mechanism of solar wind acceleration from chromospheric heights to the upper corona.  相似文献   

16.
17.
Seven-year-long seeing-free observations of solar magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to study the sources of the solar mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the solar disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (\(B^{\mathrm{W}}\)), intermediate (\(B^{\mathrm{I}}\)), and strong (\(B^{\mathrm{S}}\)) fields. The \(B^{\mathrm{W}}\) component represents areas with magnetic flux densities below the chosen threshold; the \(B^{\mathrm{I}}\) component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The \(B^{\mathrm{S}}\) component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that i) when the threshold level of 30 Mx?cm?2 is applied, the \(B^{\mathrm{I}}\) and \(B^{\mathrm{S}}\) components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2?–?6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx?cm?2, the contribution from \(B^{\mathrm{I}}+B^{\mathrm{S}}\) grows to 98%, and the fraction of the occupied area reaches a value of about 40% of the solar disk. In summary, we found that regardless of the threshold level, only a small part of the solar disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the solar surface are the source of the SMMF may need to be reconsidered.  相似文献   

18.
The Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard the PRoject for OnBoard Autonomy-2 (PROBA2) spacecraft provides images of the solar corona in EUV channel centered at 174 Å. These data, together with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 Å and AIA 171 Å channels. We observe that bright points are seen in EUV channels corresponding to a magnetic flux of the order of 1018 Mx. We find that there exists a good correlation between total emission from the bright point in several UV–EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings, and we have attempted to find the oscillation periods in bright points and their connection to magnetic-flux changes. The observed periods are generally long (10?–?25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection.  相似文献   

19.
We carry out 2.5D MHD simulations to study the interaction between a dipolar magnetic field of a T Tauri Star, a circumstellar accretion disk, and the halo above the disk. The initial disk is the result of 1D radiation hydrodynamics computations with opacities appropriate for low temperatures. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura–Sunyaev-type eddy viscosity. Magnetocentrifugal forces due to the rotational shear between the star and the Keplerian disk cause the magnetic field to be stretched outwards and part of the field lines are opened. For a solar-mass central star and an accretion rate of 10?8 solar masses per year a field strength of 100 G (measured on the surface of the star) launches a substantial outflow from the inner parts of the disk. For a field strength of 1 kG the inner parts of disk is disrupted. The truncation of the disk turns out to be temporary, but the magnetic field structure remains changed after the disk is rebuilt.  相似文献   

20.
Quasi-separatrix layer, also called as QSL, is a region where magnetic connectivity changes drastically, and mostly well coincides with the location of flare ribbons in observations. The research on the relations of this topological structure with the 3-dimensional magnetic reconnection, and solar flares has attracted more and more attention. In this paper, using the theory of QSL we investigate a C5.7 classical two-ribbon solar flare (event 1) which occurred at AR11384 on 2011 December 26, and an M6.5 solar flare (event 2) which occurred at AR12371 on 2015 June 22, respectively. Combining the multi-wavelength data of AIA (Atmospheric Imaging Assembly) and vector magnetogrames of HMI (Helioseismic and Magnetic Imager) onboard SDO (Solar Dynamics Observatory), we extrapolate the coronal magnetic field using the PF (Potential Field) and NLFFF (Nonlinear Force Free Field) models, and calculate the evolution of the AR (Active Region) magnetic free energy. Then, we calculate the logarithmic distribution of Q-factors (magnetic squashing factor) at different heights above the solar photosphere with the results of the PF and NLFFF extrapolations, in order to determine the location of QSL. Afterward, we investigate the evolutionary relation between the QSLs at different heights above the solar photosphere and the flare ribbons observed at the corresponding heights. Finally, we study the multi-wavelength evolution features of the 2 flare events, and obtain by calculation the mean slip velocities of magnetic lines in the event 2 at 304 Å and 335 Å to be 4.6 km s-1 and 6.3 km s-1, respectively. We find that the calculated location of QSL in the chromosphere and corona is in good agreement with the location of flare ribbons at the same height, and the QSLs at different heights have almost the same evolutionary behavior in time as the flare ribbons of the corresponding heights, which highlights the role of QSL in the research of 3D magnetic reconnection and solar flare, and we suggest that the energy release in the flare of event 2 may be triggered by the magnetic reconnection at the place of QSL. We also suggest that the QSL is very important for us to study the essential relation between the 3D and 2D magnetic reconnections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号