首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
We study the influence of different magnetic boundary conditions on the generation of magnetic fields by turbulent convection. It is found that the structure and strength of the generated field in the vicinity of the boundary is strongly dependent on the choice of boundary conditions. In the convective interior, however, the solutions remain largely insensitive to the boundary conditions. In all cases the overall efficiency of the dynamo process remains high with a steady state magnetic energy density between 12 and 25 per cent of the turbulent kinetic energy, and peak field values exceeding the equipartition level. These results support the idea that the solar granulation may constitute a dynamo source for magnetic fields in the quiet photosphere.  相似文献   

2.
Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun.  相似文献   

3.
The solar corona – one of the most spectacular celestial shows and yet one of the most challenging puzzles – exhibits a spectrum of structures related to both the quiet Sun and active regions. In spite of dramatic differences in appearance and physical processes, all these structures share a common origin: they are all related to the solar magnetic field. The origin of the field is beneath the turbulent convection zone, where the magnetic field is not a master but a slave, and one can wonder how much the coronal magnetic field “remembers” its dynamo origin. Surprisingly, it does. We will describe several observational phenolmena that indicate a close relationship between coronal and sub-photospheric processes.  相似文献   

4.
We have performed 3-D numerical simulations of compressible convection under the influence of rotation and magnetic fields in spherical shells. They aim at understanding the subtle coupling between convection, rotation and magnetic fields in the solar convection zone. We show that as the magnetic Reynolds number is increased in the simulations, the magnetic energy saturates via nonlinear dynamo action, to a value smaller but comparable to the kinetic energy contained in the shell, leading to increasingly strong Maxwell stresses that tend to weaken the differential rotation driven by the convection. These simulations also indicate that the mean toroidal and poloidal magnetic fields are small compared to their fluctuating counterparts, most of the magnetic energy being contained in the non-axisymmetric fields. The intermittent nature of the magnetic fields generated by such a turbulent convective dynamo confirms that in the Sun the large-scale ordered dynamo responsible for the 22-year cycle of activity can hardly be located in the solar convective envelope.  相似文献   

5.
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2?–?10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.  相似文献   

6.
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.  相似文献   

7.
Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much higher values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength of the axisymmetric toroidal field is not a good predictor of the production rate for buoyant loops or the amount of magnetic flux in the loops that are produced.  相似文献   

8.
We combine a convectively driven dynamo in a spherical shell with a nearly isothermal density-stratified cooling layer that mimics some aspects of a stellar corona to study the emergence and ejections of magnetic field structures. This approach is an extension of earlier models, where forced turbulence simulations were employed to generate magnetic fields. A spherical wedge is used which consists of a convection zone and an extended coronal region to ???1.5 times the radius of the sphere. The wedge contains a quarter of the azimuthal extent of the sphere and 150° in latitude. The magnetic field is self-consistently generated by the turbulent motions due to convection beneath the surface. Magnetic fields are found to emerge at the surface and are ejected to the coronal part of the domain. These ejections occur at irregular intervals and are weaker than in earlier work. We tentatively associate these events with coronal mass ejections on the Sun, even though our model of the solar atmosphere is rather simplistic.  相似文献   

9.
The solar dynamo     
A. A. Ruzmaikin 《Solar physics》1985,100(1-2):125-140
The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field.  相似文献   

10.
11.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

12.
The radio emission from the solar corona is related to the configuration of the inner atmosphere. By studying the Sun at multiple frequencies, different layers of plasma in solar atmosphere are probed. We use the Mauritius Radio Telescope. The quiet Sun period, difference maps using synthesized 1D maps reveal a certain regular feature, the origin of which is not thoroughly understood and which is attributed to the solar differential rotation. For the active Sun period, the coronal emission is linked to the magnetic field configuration originating from the inner atmosphere. As expected, a strong correlation exists between the MRT 151 MHz and Nancay 164 MHz radio emission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Newly formed stars have magnetic fields provided by the compression of the interstellar field, and contrary to a widely accepted idea these fields are not destroyed by convective motions. For the same reason, the fallacy of ‘turbulent diffusion’, turbulent dynamo action is not possible in any star. Thus all stellar magnetic fields have a common origin, and persist throughout the lifetime of each star, including degenerate phases. This common origin, and a general similarity in stellar evolutionary processes, suggest that the fields may develop similar structural characteristics and MHD effects. This would open new possibilities of coordinating the studies of different types of stars and relating them to solar physics which has tended to become isolated from general stellar physics. As an initial step we consider three features of solar magnetic fields and their MHD effects. First, the solar magnetic field comprises two separate components: a poloidal field and a toroidal field. The former is a dipole field, permeating the entire Sun and closely aligned with the rotational axis; at the surface it is always concealed by much stronger elements of the toroidal field. The latter is probably wound from the former by differential rotation at latitudes below about 35°, where sections emerge through the solar surface and are then carried polewards. The second feature of solar magnetic fields is that all flux is concentrated into flux tubes of strength some kG, isolated within a much larger volume of non-magnetic plasma. The third feature is that the flux tubes are helically twisted into flux ropes (up to ?1022Mx) and smaller elements ranging down to flux fibres (? 1018Mx). Some implications of similar features in other stars are discussed.  相似文献   

14.
Throughout months of extremely low solar activity during the recent extended solar-cycle minimum, structural evolution continued to be observed from the Sun through the solar wind and to the Earth. In 2008, the presence of long-lived and large low-latitude coronal holes meant that geospace was periodically impacted by high-speed streams, even though solar irradiance, activity, and interplanetary magnetic fields had reached levels as low as, or lower than, observed in past minima. This time period, which includes the first Whole Heliosphere Interval (WHI 1: Carrington Rotation (CR) 2068), illustrates the effects of fast solar-wind streams on the Earth in an otherwise quiet heliosphere. By the end of 2008, sunspots and solar irradiance had reached their lowest levels for this minimum (e.g., WHI 2: CR 2078), and continued solar magnetic-flux evolution had led to a flattening of the heliospheric current sheet and the decay of the low-latitude coronal holes and associated Earth-intersecting high-speed solar-wind streams. As the new solar cycle slowly began, solar-wind and geospace observables stayed low or continued to decline, reaching very low levels by June??C?July 2009. At this point (e.g., WHI 3: CR 2085) the Sun?CEarth system, taken as a whole, was at its quietest. In this article we present an overview of observations that span the period 2008??C?2009, with highlighted discussion of CRs 2068, 2078, and 2085. We show side-by-side observables from the Sun??s interior through its surface and atmosphere, through the solar wind and heliosphere and to the Earth??s space environment and upper atmosphere, and reference detailed studies of these various regimes within this topical issue and elsewhere.  相似文献   

15.
Observational and theoretical knowledge about global-scale solar dynamo ingredients have reached the stage that it is possible to calibrate a flux-transport dynamo for the Sun by adjusting only a few tunable parameters. The important ingredients in this class of model are differential rotation (Omega-effect), helical turbulence (alpha-effect), meridional circulation and turbulent diffusion. The meridional circulation works as a conveyor belt and governs the dynamo cycle period. Meridional circulation and magnetic diffusivity together govern the memory of the Sun's past magnetic fields. After describing the physical processes involved in a flux-transport dynamo, we will show that a predictive tool can be built from it to predict mean solar cycle features by assimilating magnetic field data from previous cycles. We will discuss the theoretical and observational connections among various predictors, such as dynamo-generated toroidal flux integral, cross-equatorial flux, polar fields and geomagnetic indices. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This paper is largely a reply to Cowling's review of the present status of cosmic dynamo theory and its alternatives of primordial or fossil field models. Central is the question of turbulent diffusion, without which plasma dynamos will not work but primordial magnetic fields are retained. Turbulence does not shred or divide fields into small-scale elements as claimed; instead it creates these elements in addition to the large-scale field which remains after Ohmic diffusion has destroyed the small fields. The significance of the existence of a terrestrial dynamo is stressed and various objections to the existence of a solar-type dynamo are discussed, including the steady divergence of theory and observational evidence over a quarter century. Cowling's criticisms of the primordial field theory are discussed; these include turbulent diffusion, the timing of the solar magnetic cycle, and the importance attached to observations in active and quiet magnetic regions.Since this paper was communicated, a personal communication from Professor Cowling has partially resolved the difference of opinion about turbulent diffusion and its effects. This is discussed in a letter to the Editor, at the end of this volume, p. 477.  相似文献   

17.
It is thought that the large-scale solar-cycle magnetic field is generated in a thin region at the interface of the radiative core (RC) and solar convection zone (SCZ). We show that the bulk of the SCZ virogoursly generates a small-scale turbulent magnetic field. Rotation, while not essential, increases the generation rate of this field.Thus, fully convective stars should have significant turbulent magnetic fields generated in their lower convection zones. In these stars the absence of a radiative core, i.e., the absence of a region of weak buoyancy, precludes the generation of a large-scale magnetic field, and as a consequence the angular momentum loss is reduced. This is, in our opinion, the explanation for the rapid rotation of the M-dwarfs in the Hyades cluster.Adopting the Utrecht's group terminology, we argue that the residual chromospheric emission should have three distinctive components: the basal emission, the emission due to the large-scale field, and the emission due to the turbulent field, with the last component being particularly strong for low mass stars.In the conventional dynamo equations, the dynamo frequencies and the propagation of the dynamo wave towards the equator are based on the highly questionable assumption of a constant . Furthermore, meridional motions, a necessary consequence of the interaction of rotation with convection, are ignored. In this context we discuss Stenflo's results about the global wave pattern decomposition of the solar magnetic field and conclude that it cannot be interpreted in the framework of the conventional dynamo equations.We discuss solar dynamo theories and argue that the surface layers could be essential for the generation of the poloidal field. If this is the case an -effect would not be needed at the RC-SCZ interface (where the toroidal field is generated). The two central problems facing solar dynamo theories may the transport of the surface poloidal field to the RC-SCZ interface and the uncertainty about the contributions to the global magnetic field by the small-scale magnetic features.Visitor, National Solar Observatory, National Optical Astronomy Observatories.The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

18.
S. V. Berdyugina 《Solar physics》2004,224(1-2):123-131
The modulation of solar activity closely follows the solar rotation period suggesting the existence of long-lived active regions at preferred longitudes. For instance, two preferred active longitudes in both southern and northern hemispheres are found to be persistent at the century time scale. These regions migrate with differential rotation and periodically alternate their activity levels showing a flip-flop cycle. The pattern and behaviour of active longitudes on the Sun is similar to that on cool, rapidly rotating stars with outer convective envelopes. This suggests that the magnetic dynamo, including non-axisymmetric magnetic fields and flip-flop cycles, is also similar in these stars. This allows us to overview the phenomenon of stellar magnetic activity and to study it in detail on the Sun.  相似文献   

19.
The solar dynamo     
The solar dynamo continues to pose a challenge to observers and theoreticians. Observations of the solar surface reveal a magnetic field with a complex, hierarchical structure consisting of widely different scales. Systematic features such as the solar cycle, the butterfly diagram, and Hale's polarity laws point to the existence of a deep-rooted large-scale magnetic field. At the other end of the scale are magnetic elements and small-scale mixed-polarity magnetic fields. In order to explain these phenomena, dynamo theory provides all the necessary ingredients including the effect, magnetic field amplification by differential rotation, magnetic pumping, turbulent diffusion, magnetic buoyancy, flux storage, stochastic variations and nonlinear dynamics. Due to advances in helioseismology, observations of stellar magnetic fields and computer capabilities, significant progress has been made in our understanding of these and other aspects such as the role of the tachocline, convective plumes and magnetic helicity conservation. However, remaining uncertainties about the nature of the deep-seated toroidal magnetic field and the effect, and the forbidding range of length scales of the magnetic field and the flow have thus far prevented the formulation of a coherent model for the solar dynamo. A preliminary evaluation of the various dynamo models that have been proposed seems to favor a buoyancy-driven or distributed scenario. The viewpoint proposed here is that progress in understanding the solar dynamo and explaining the observations can be achieved only through a combination of approaches including local numerical experiments and global mean-field modeling.Received: 5 May 2003, Published online: 15 July 2003  相似文献   

20.
The solar wind parameters were analyzed using the concept which is being developed by the authors and assumes the existence of several systems of magnetic fields of different scales on the Sun. It was demonstrated that the simplest model with one source surface and a radial expansion does not describe the characteristics of the quiet solar wind adequately. Different magnetic field subsystems on the Sun affect the characteristics of the solar wind plasma in a different way, even changing the sign of correlation. New multiparameter schemes were developed to compute the velocity and the magnetic field components of the solar wind. The radial component of the magnetic field in the solar corona and the tilt of the heliospheric current sheet, which determines the degree of divergence of field lines in the heliosphere, were taken into account when calculating the magnetic field in the solar wind. Both the divergence of field lines in the corona and the strength of the solar magnetic field are allowed for in calculating the solar wind speed. The suggested schemes provide a considerably higher computation accuracy than that given by commonly used one-parameter models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号