首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
I summarize the rich variety of talks and posters at this meeting, Young massive star clusters. Initial conditions and environments, which concentrated on young massive clusters (YMCs) and, in particular, the initial conditions required for their formation and survival as well as the importance of their environments.  相似文献   

2.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

3.
A search for young massive star clusters (YMCs) in the nearby face-on spiral galaxy M51 (NGC 5194) has been carried out using UBV CCD images from the prime focus camera on the Lick 3-m Shane telescope. The YMC population is found to be quite rich with a specific U -band luminosity     consistent with the high current star formation rate (SFR) of this galaxy. The brightest clusters have     far brighter than any young clusters currently known in the Milky Way and even surpassing the luminosity of the R136 cluster in the 30 Dor complex in the Large Magellanic Cloud. A few of the YMCs are examined on archive images from the Wide Field Planetary Camera (WF/PC2) on board the Hubble Space Telescope ( HST ), confirming their cluster nature and providing estimates of their effective radii of 2–3 pc. The number of YMCs in M51 is compatible with extrapolation of a power-law luminosity function with exponent ∼−2 from a Milky Way-like population of open clusters. Both the SFR and T L ( U ) of M51 are similar to those of other cluster-rich spiral galaxies like NGC 1313 and M83.  相似文献   

4.
We present virial mass estimates of young massive clusters (YMCs) in the starburst galaxies NGC1140 and M83, determined from high spectral resolution VLT echelle spectroscopy and high spatial resolution Hubble Space Telescope imaging. The survivability of such clusters is important in testing the scenario that YMCs are potentially proto-globular clusters. As young clusters, they lie in the domain in which dynamical masses appear to overestimate true cluster masses, most likely due to the clusters not being virialised. We find that the dynamical mass of NGC1140-1 is approximately ten times greater than its photometric mass. We propose that the most likely explanation for this disparity is the crowded environment of NGC1140-1, rather than this being solely due to a lack of virial equilibrium.  相似文献   

5.
Recent spectroscopic observations of galaxies in the Fornax-Cluster reveal nearly unresolved ‘star-like’ objects with red-shifts appropriate to the Fornax-Cluster. These objects have intrinsic sizes of ≈ 100 pc and absolute B-band magnitudes in the range - 14 < MB < -11.5 mag and lower limits for the central surface brightness μB ≥ 23 mag/arcsec2 (Phillipps et al., 2001, Hilker et al., 1999), and so appear to constitute a new population of ultra-compact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar super-clusters (= clusters of star clusters; not to confuse with super stellar clusters (SSC)) by P. Kroupa (1998), which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of super-clusters in a tidal field. The YMCs merge on a few super-cluster crossing times. Super-clusters that are initially as concentrated and massive as Knot S in the interacting Antennae galaxies (Whitmore et al., 1999) evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered proto- globular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.  相似文献   

7.
I review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with violent galaxy interactions. In particular, I address the key question as to whether at least some of these YMCs can be considered proto-globular clusters (GCs). In the absence of significant external perturbations, the key factor determining a cluster’s long-term survival chances is the shape of its stellar initial mass function. I conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.  相似文献   

8.
We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) architecture will provide uniform, diffraction-limited performance in the J, H and K bands over 17–30 arcsec diameter fields with 50 per cent sky coverage at the galactic pole, as is required to support TMT science cases. The NFIRAOS and LGSF subsystems completed successful preliminary and conceptual design reviews, respectively, in the latter part of 2011. We also report on progress in AO component prototyping, control algorithm development, and system performance analysis, and conclude with an outline of some possible future AO systems for TMT.  相似文献   

9.
《New Astronomy》2004,9(1):33-42
We obtained low resolution (R=100) mid-infrared (8–13 μm wavelengths) spectra of 8 nearby young main sequence stars with the Keck 1 telescope and Long-Wavelength Spectrometer (LWS) to search for 10 μm silicate (Si–O stretch) emission from circumstellar dust. No stars exhibited readily apparent emission: Spectra were then analyzed by least-squares fitting of a template based on a spectrum of Comet Hale-Bopp. Using this technique, we were able to constrain the level of silicate emission to a threshold 10 times below what was previously possible from space. We found one star, HD 17925, with a spectrum statistically different from its calibrator and consistent with a silicate emission peak of 7% of the photosphere at a wavelength of 10 μm. Excess emission at 60 μm from this star has already been reported.  相似文献   

10.
Triplicity and physical characteristics of Asteroid (216) Kleopatra   总被引:2,自引:0,他引:2  
To take full advantage of the September 2008 opposition passage of the M-type Asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis, F. et al. [2008a]. (3749) Balam. In: Green, D.W.E. (Ed.), IAU Circ. 8928; Marchis, F., Descamps, P., Berthier, J., Emery, J.P. [2008b]. S/2008 ((216)) 1 and S/2008 ((216)) 2. In: Green, D.W.E. (Ed.), IAU Circ. 8980). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64 ± 0.02 × 1018 kg. This translates into a bulk density of 3.6 ± 0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ∼30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.  相似文献   

11.
The problem of providing Adaptive Optics (AO) correction over a wide field of view is one that can be alleviated by using multiple conjugate AO (MCAO), or a low-altitude Laser Guide Star (LGS) that is projected to an altitude below any high layer turbulence. A low-altitude LGS can only sense wavefront distortions induced by low-altitude turbulence, which is dominated by a strong boundary layer at the ground. Sensing only the wavefront from this layer provides an AO system with a more spatially invariant performance over the telescope field of view at the expense of overall correction. An alternative method for measuring a ground-layer biased wavefront using a single rotating LGS is presented together with a numerical analysis of the wide-field performance of an AO system utilizing such a LGS. System performance in H and K bands is predicted in terms of system Strehl ratio, which shows that uniform correction can be obtained over fields of view of 200 arcsec in diameter. The simulations also show that the on-axis performance of a LGS utilizing Rayleigh backscattered light will be improved.  相似文献   

12.
OSIRIS (OH-Suppressing Infra-Red Integral-field Spectrograph) is a new facility instrument for the Keck Observatory. After seeing first light in February 2005, OSIRIS is currently undergoing commissioning. OSIRIS provides the capability of performing three-dimensional spectroscopy in the near-infrared z, J, H, and K bands at the resolution limit of the Keck II telescope, which is equipped with adaptive optics and a laser guide star. The science case for OSIRIS is summarized, and the instrument and associated data reduction software are described.  相似文献   

13.
A rare opportunity of observing a lunar occultation of a Wolf–Rayet star (WR104) in the near-infrared K band (2.2 μm) was utilized to probe the thick dust envelope surrounding the star at a high one-dimensional angular resolution (∼2 mas). Analysis of the occultation light curve shows a dust structure departing significantly from the uniform disc profile. Our results are in good agreement with recent aperture-masking interferometry carried out at the Keck I telescope, which shows a pinwheel structure around WR104. We report additional fine structures in the dust envelope.  相似文献   

14.
Luminous infrared galaxies (LIRGs) provide insights into star formation (SF) and nuclear activity (AGN) under extreme conditions. We are carrying out a multi-wavelength (X-rays, ultraviolet through mid-infrared, and radio) program to obtain high angular resolution observations of a volume-limited sample of local LIRGs. The typical distances to these LIRGs (D=35–75 Mpc) allow us to identify star clusters and H II regions on scales of tens to hundreds of parsecs. We present here recent results on properties of the massive star-forming regions and star clusters in two LIRGs in our sample, Arp 299 and NGC7469.  相似文献   

15.
All of the extremely large telescopes (ELTs) will utilize sodium laser guide star (LGS) adaptive optics (AO) systems. Most of these telescopes plan to use the Shack-Hartmann approach for wavefront sensing. In these AO systems, the laser spots in subapertures at the edge of the pupil will suffer from spot elongation due to the 10 km extent of the sodium layer and the large separation from the projection laser. This spot elongation will severely degrade the performance of standard geometry wavefront sensing systems. In this paper, we present a CCD with custom pixel morphology that aligns the pixels of each subaperture with the radial extension of the LGS spot. This CCD design will give better performance than a standard geometry CCDs for continuous wave lasers. In addition, this CCD design is optimal for a pulsed sodium laser. The pixel geometry enables each subaperture to follow a laser pulse traversing the sodium layer, providing optimal sampling of a limited number of detected photons. In addition to novel pixel layout, this CCD will also incorporate experimental JFET sense amplifiers and use CMOS design approaches to simplify the routing of biases, clocks and video output. This CCD will attain photon-noise limited performance at high frame rates, and is being incorporated in the plans for the Thirty Meter Telescope (TMT).  相似文献   

16.
We report on Adaptive Optics observations of the satellite of Asteroid 121 Hermione with the ESO-Paranal UT4 VLT and the Keck AO telescopes. The binary system, belonging to the Cybele family, was observed during two observing campaigns in January 2003 and January 2004 aiming to confirm its trajectory and accurately determine its orbital elements. A precessing Keplerian model was used to describe the motion of S/2002 (121) 1. We find that the satellite of Hermione revolves at a=768±11 km from the primary in P=2.582±0.002 days with a roughly circular and prograde orbit (e=0.001±0.001, i=3±2° w.r.t. equator primary). These extensive astrometric measurements enable us to determine the mass of Hermione to be 0.54±0.03×1019 kg and its pole solution (λ0=1.5°±2.00, β0=10°±2.0 in ecliptic J2000). Additional Keck AO observations taken close to the asteroid opposition in December 2003 give us direct insight into the structure of the primary which presents a bilobated shape. Since the angular resolution is limited to the theoretical angular resolution of the telescope (43 mas corresponding to a spatial resolution of 80 km), two shape models (called snowman and peanut) are proposed based on the images which were deconvolved with MISTRAL deconvolution process. Assuming a purely synchronous orbit and knowing the mass of the primary, the peanut shape composed of two separated components is quite unlikely. Additionally the J2 calculated from the analysis of the secondary orbit is not in agreement with the peanut model, but close to the snowman shape. The bulk density of the primary as derived from the observed size of the snowman shape is estimated to ρ∼1.8±0.2 g/cm3 implying a porosity ∼14% for this C-type asteroid, corresponding to a fractured asteroid. Considering the IRAS diameter, the density is lower (ρ=1.1±0.3 g/cm3) leading to a high porosity (p=30-60%) with a nominal value of p=48%, which indicates a completely loose rubble-pile structure for the primary. Further work is necessary to better constrain the size, shape, and then internal structure of Hermione's primary.  相似文献   

17.
We study the nature of faint blue compact galaxies (BCGs) at redshifts z ∼ 0.2 - 1.3 using Keck and HST. Despite being very luminous (LB ∼ L*), most distant BCGs have masses M ∼ 1010M, i.e., they are dwarf stellar systems. The majority of these galaxies have colors, sizes, surface brightnesses, luminosities, velocity widths, excitations, star formation rates (SFR), and mass-to-light ratios characteristic of the most luminous nearby HII galaxies. The more massive BCGs form a more heterogeneous class of evolved starburst, similar to local disk starburst galaxies. Without additional star formation, HII-like BCGs will most likely fade to resemble today's spheroidal galaxies such as NGC 205. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

19.
We present infrared spectroscopy of the Antennae galaxies (NGC 4038/9) with the near-infrared spectrometer (NIRSPEC) at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) with 0&farcs;39 seeing in the K band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR [MK&parl0;0&parr0; approximately -17.9] is insignificant optically but is coincident with the highest surface brightness peak in the mid-IR (12-18 μm) Infrared Space Observatory image presented by Mirabel et al. We obtained high signal-to-noise ratio 2.03-2.45 μm spectra of the nucleus and the obscured star cluster at R approximately 1900. The cluster is very young ( approximately 4 Myr), massive (M approximately 16x106 M middle dot in circle), and compact (with a density of approximately 115 M middle dot in circle pc-3 within a 32 pc half-light radius), assuming a Salpeter initial mass function (0.1-100 M middle dot in circle). Its hot stars have a radiation field characterized by Teff approximately 39,000 K, and they ionize a compact H ii region with ne approximately 104 cm-3. The stars are deeply embedded in gas and dust (AV approximately 9-10 mag), and their strong far-ultraviolet field powers a clumpy photodissociation region with densities nH greater, similar105 cm-3 on scales of approximately 200 pc, radiating LH21-0S&parl0;1&parr0;=9600 L middle dot in circle.  相似文献   

20.
Starbursts are systems with very high star formation rate per unit area. They are the preferred place where massive stars form; the main source of thermal and mechanical heating in the interstellar medium, and the factory where the heavy elements form. Thus, starbursts play an important role in the origin and evolution of galaxies. The similarities between the physical properties of local starbursts and high-z star-forming galaxies, highlight the cosmological relevance of starbursts. On the other hand, nearby starbursts are laboratories where to study violent star formation processes and their interaction with the interstellar and intergalactic media, in detail and deeply. Starbursts are bright at ultraviolet (UV) wavelengths, as they are in the far-infrared, due to the ‘picket-fence’ interstellar dust distribution. After the pioneering IUE program, high spatial and spectral resolution UV observations of local starburst galaxies, mainly taken with HST and FUSE, have made relevant contributions to the following issues:
  • The determination of the initial mass function (IMF) in violent star forming systems in low and high metallicity environments, and in dense (e.g. in stellar clusters) and diffuse environments: A Salpeter IMF with high-mass stars constrains well the UV properties.
  • The modes of star formation: Starburst clusters are an important mode of star formation. Super-stellar clusters have properties similar to globular clusters.
  • The role of starbursts in AGN: Nuclear starbursts can dominate the UV light in Seyfert 2 galaxies, having bolometric luminosities similar to the estimated bolometric luminosities of the obscured AGN.
  • The interaction between massive stars and the interstellar and intergalactic media: Outflows in cold, warm and coronal phases leave their imprints on the UV interstellar lines. Outflows of a few hundred km s?1 are ubiquitous phenomena in starbursts. These metal-rich outflows and the ionizing radiation can travel to the halo of galaxies and reach the intergalactic medium.
  • The contribution of starbursts to the reionization of the universe: In the local universe, the fraction of ionizing photons that escape from galaxies and reach the intergalactic medium is of a few percent. However, in high-z star-forming galaxies, the results are more controversial.
  • Despite the very significant progress over the past two decades in our understanding of the starburst phenomenon through the study of the physical processes revealed at satellite UV wavelengths, there are important problems that still need to be solved. High-spatial resolution UV observations of nearby starbursts are crucial to further progress in understanding the violent star formation processes in galaxies, the interaction between the stellar clusters and the interstellar medium, and the variation of the IMF. High-spatial resolution spectra are also needed to isolate the light from the center to the disk in UV luminous galaxies at z = 0.1–0.3 found by GALEX. Thus, a new UV mission furnished with an intermediate spectral resolution long-slit spectrograph with high spatial resolution and high UV sensitivity is required to further progress in the study of starburst galaxies and their impact on the evolution of galaxies.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号