首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion of charged particles in a stochastic magnetic field (strengthB) which is superimposed on a uniform magnetic fieldB 0 k is studied. A slab model of the stochastic magnetic field is used. Many particles were released into different realizations of the magnetic field and their subsequent displacements z in the direction of the uniform magnetic field numerically computed. The particle trajectories were calculated over periods of many particle scattering times. The ensemble average was then used to find the parallel diffusion coefficient . The simulations were performed for several types of stochastic magnetic fields and for a wide range of particle gyro-radius and the parameterB/B 0. The calculations have shown that the theory of charged particle diffusion is a good approximation even when the stochastic magnetic field is of the same strength as the uniform magnetic field.  相似文献   

2.
We use the data for the \(\text{H}\beta\) emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates \(\langle \mbox{SFR} \rangle \) averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking \(\langle \mbox{SFR} \rangle \) and the star formation rate \(\mbox{SFR}_{0}\) derived from the \(\text{H}\beta\) luminosity at zero starburst age is found to be 0.04. We compare \(\langle \mbox{SFR} \rangle \mbox{s}\) with some commonly used SFRs which are derived adopting a continuous star formation during a period of \({\sim}\,100~\mbox{Myr}\), and find that the latter ones are 2–3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for \(\langle \mbox{SFR} \rangle \) determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of \({\sim}\,2\) of the \(\langle \mbox{SFR} \rangle \) averaged over the lifetime of the bursting compact galaxy.  相似文献   

3.
In this paper we discuss the particle flow or streaming and energy changes of cosmic rays in the interplanetary region via flow lines in momentum-position space. We consider the steady-state case where particles are released monoenergetically from the Sun or from infinity and study the cosmic-ray traffic pattern in momentum and position arising from monoenergetic sources. The analysis makes extensive use of the result (wherep is the particle momentum,V the solar wind velocity andG the cosmic-ray density gradient) for the mean time rate of change of momentum of cosmic rays reckoned for a fixed volume in a reference frame fixed in the solar system, developed by us in several recent papers.Deceased.  相似文献   

4.
If fluctuations in the density are neglected, the large-scale, axisymmetric azimuthal momentum equation for the solar convection zone (SCZ) contains only the velocity correlations and where u are the turbulent convective velocities and the brackets denote a large-scale average. The angular velocity, , and meridional motions are expanded in Legendre polynomials and in these expansions only the two leading terms are retained (for example, where is the polar angle). Per hemisphere, the meridional circulation is, in consequence, the superposition of two flows, characterized by one, and two cells in latitude respectively. Two equations can be derived from the azimuthal momentum equation. The first one expresses the conservation of angular momentum and essentially determines the stream function of the one-cell flow in terms of : the convective motions feed angular momentum to the inner regions of the SCZ and in the steady state a meridional flow must be present to remove this angular momentum. The second equation contains also the integral indicative of a transport of angular momentum towards the equator.With the help of a formalism developed earlier we evaluate, for solid body rotation, the velocity correlations and for several values of an arbitrary parameter, D, left unspecified by the theory. The most striking result of these calculations is the increase of with D. Next we calculate the turbulent viscosity coefficients defined by whereC ro 0 and C o 0 are the velocity correlations for solid body rotation. In these calculations it was assumed that 2 was a linear function of r. The arbitrary parameter D was chosen so that the meridional flow vanishes at the surface for the rotation laws specified below. The coefficients v ro i and v 0o i that allow for the calculation of C ro and C 0o for any specified rotation law (with the proviso that 2 be linear) are the turbulent viscosity coefficients. These coefficients comply well with intuitive expectations: v ro 1 and –v 0o 3 are the largest in each group, and v 0o 3 is negative.The equations for the meridional flow were first solved with 0 and 2 two linear functions of r ( 0 1 = – 2 × 10 –12 cm –1) and ( 2 1 = – 6 × 10 12 cm –1). The corresponding angular velocity increases slightly inwards at the poles and decreases at the equator in broad agreement with heliosismic observations. The computed meridional motions are far too large ( 150m s–1). Reasonable values for the meridional motions can only be obtained if o (and in consequence ), increase sharply with depth below the surface. The calculated meridional motion at the surface consists of a weak equatorward flow for gq < 29° and of a stronger poleward flow for > 29°.In the Sun, the Taylor-Proudman balance (the Coriolis force is balanced by the pressure gradient), must be altered to include the buoyancy force. The consequences of this modification are far reaching: is not required, now, to be constant along cylinders. Instead, the latitudinal dependence of the superadiabatic gradient is determined by the rotation law. For the above rotation laws, the corresponding latitudinal variations of the convective flux are of the order of 7% in the lower SCZ.  相似文献   

5.
Techniques are developed to facilitate the transformation of a perturbed Keplerian system into Deláunay normal form at first order. The implicit dependence of the Hamiltonian on 1, the mean anomaly, through the explicit variable f, the true anomaly, or E, the eccentric anomaly, is removed through first order for terms of the form:
  相似文献   

6.
An attempt has been made to solve the field equations with perfect fluid in an inhomogeneous space-time governed by the metric
in both Einstein and Barber's theories of gravitation. It is shown here that in both the theories the field equations are reducible to a Laplace equation and the perfect fluid distribution does not survive. Moreover all the solutions represent plane gravitational wave and the vacuum models in both the theories can be constructed by an arbitrary harmonic function iny and z coordinates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The main form of the representation of a gravitational potential V for a celestial body T in outer space is the Laplace series in solid spherical harmonics \((R/r)^{n+1}Y_n(\theta ,\lambda )\) with R being the radius of the enveloping T sphere. The surface harmonic \(Y_n\) satisfies the inequality
$$\begin{aligned} \langle Y_n\rangle < Cn^{-\sigma }. \end{aligned}$$
The angular brackets mark the maximum of a function’s modulus over a unit sphere. For bodies with an irregular structure \(\sigma = 5/2\), and this value cannot be increased generally. However, a class of irregular bodies (smooth bodies with peaked mountains) has been found recently in which \(\sigma = 3\). In this paper, we will prove the exactness of this estimate, showing that a body belonging to the above class does exist and
$$\begin{aligned} 0<\varlimsup n^3\langle Y_n\rangle <\infty \end{aligned}$$
for it.
  相似文献   

8.
The discovery of ‘twin quasistellar objects’ arose interests among astronomers and astrophysicists to study gravitational lensing problems. The deviation of light from its straight line path is caused by two sources according to the general theory of relativity: (i) the presence of massive objects, i.e. the presence of gravitational field and (ii) the presence of a ‘vacuum field’ which arises because there is a non-zero cosmological vacuum energy. Recently, the research on the relationship between cosmological constant and gravitational lensing process is rather active (see reference [1, 2, 3]. According to the Kottler space time metric, we have deduced an explicit representation of the angular deviation of light path. The deviation term is found to be simply , where M is the mass of the ‘astronomical lens’, rmin is the distance between the point of nearest approach and the centre of M, other symbols have their usual meaning. The presence of this term may be meaningful to the study of cosmological constant using the concept of gravitational lensing; however more sophisticated analysis awaits. Consider a signal radar to be sent from one planet to another. We have found that the radar echo delay contributed by the existence of the cosmological constant Λ is expressible as This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The non-linear stability of L 4 in the restricted three-body problem has been studied when the bigger primary is a triaxial rigid body with its equatorial plane coincident with the plane of motion. It is found that L 4 is stable in the range of linear stability except for three mass ratios:
where A1, A2 depend upon the lengths of the semi axes of the triaxial rigid body. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
EinsteinA-coefficients for transitions inSii, calculated with the atomic structure package CIV3, are used to derive the electron density sensitive emission line ratio
  相似文献   

11.
A Monte Carlo approach to solving a stochastic-jump transition model for active-region energy (Wheatland and Glukhov: Astrophys. J. 494, 858, 1998; Wheatland: Astrophys. J. 679, 1621, 2008) is described. The new method numerically solves the stochastic differential equation describing the model, rather than the equivalent master equation. This has the advantages of allowing more efficient numerical solution, the modeling of time-dependent situations, and investigation of details of event statistics. The Monte Carlo approach is illustrated by application to a Gaussian test case and to the class of flare-like models presented in Wheatland (Astrophys. J. 679, 1621, 2008), which are steady-state models with constant rates of energy supply, and power-law distributed jump transition rates. These models have two free parameters: an index (δ), which defines the dependence of the jump transition rates on active-region energy, and a nondimensional ratio ( ) of total flaring rate to rate of energy supply. For the nondimensional mean energy of the active-region satisfies , resulting in a power-law distribution of flare events over many decades of energy. The Monte Carlo method is used to explore the behavior of the waiting-time distributions for the flare-like models. The models with δ≠0 are found to have waiting times that depart significantly from simple Poisson behavior when . The original model from Wheatland and Glukhov (Astrophys. J. 494, 858, 1998), with δ=0 (i.e., no dependence of transition rates on active-region energy), is identified as being most consistent with observed flare statistics.  相似文献   

12.
In 1982 and 1993, we carried out highly accurate photoelectric WBVR measurements for the close binary IT Cas. Based on these measurements and on the observations of other authors, we determined the apsidal motion $\left[ {\dot \omega _{obs} = {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} \mathord{\left/ {\vphantom {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ . This value is in agreement with the theoretically calculated apsidal motion for these stars $\left[ {\dot \omega _{th} = {{(14^\circ \pm 3^\circ )} \mathord{\left/ {\vphantom {{(14^\circ \pm 3^\circ )} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ .  相似文献   

13.
Both the critical content c ( N m /N B , whereN m ,N B are the total numbers of monopoles and nucleons, respectively, contained in the object), and the saturation content s of monopoles in a rotating relativistic object are found in this paper. The results are:
  相似文献   

14.
Book reviews     
A phenomenological model of double galaxy dynamics is constructed, assuming a Bohr model for isolated point galaxies bound together in circular orbits by the Newtonian gravitational force. The model is tested by using experimental data from three, independent, random samples of isolated pairs. In each case, the data provides cautious support for the existance of gravitational Bohr orbits in double galaxies, with a mean cosmic Planck's constant/2π given by: $$\langle \hbar _g \rangle \approx 5 \times 10^{74} {\text{erg s }}{\text{.}}$$   相似文献   

15.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

16.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

17.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

18.
A possible semi-annual variation of the Newtonian constant of gravitationG is established. For the aphelion and perihelion points of the Earth's orbit we find, respectively,
  相似文献   

19.
Intensities of carbon radio recombination lines are analytically described as function of line number, temperature and medium concentration. Accounting for the process of dielectronic recombination the balance equations for highly excited carbon populations as b n-factors are solved by the diffusional approximation. To determine medium temperature and density with the experimental amplification coefficients the system of boundary condition equations is formulated as . Analytically found in the range of temperatures T e = 25-100, 104 K the line amplification coefficients are compared with the numerical solutions. By the method of radio lines intensity ratio of carbon for the observations at frequencies 34.5–25 MHz the density magnitudes are calculated towards Cassiopeia A as function of temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The motion of Hyperion is an almost perfect application of second kind and second genius orbit, according to Poincaré’s classification. In order to construct such an orbit, we suppose that Titan’s motion is an elliptical one and that the observed frequencies are such that 4n H−3n T+3n ω=0, where n H, n T are the mean motions of Hyperion and Titan, n ω is the rate of rotation of Hyperion’s pericenter. We admit that the observed motion of Hyperion is a periodic motion such as . Then, .N H, N T, kN +. With that hypothesis we show that Hyperion’s orbit tends to a particular periodic solution among the periodic solutions of the Keplerian problem, when Titan’s mass tends to zero. The condition of periodicity allows us to construct this orbit which represents the real motion with a very good approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号