首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every three years the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes. Changes since the previous report are summarized in the Appendix.Merton Davies, The original chairman of this Working Group, died on April 17, 2001.  相似文献   

2.
Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Stallites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes.  相似文献   

3.
A summary is given about the Minor Planet survey performed in 1985 on Tautenburg Schmidt plates. There were discovered 95 asteroids and calculated 168 positions for them. These are 20 numbered objects and 75 asteroids with provisional designations, two of them have no new designation. Tautenburg observations could give a tribute to twelve planets numbered in the period of this report. Two asteroids discovered in Tautenburg have received numbers and names: (3245) Jensch = 1973 UL5 and (3338) Richter = 1973 UX5.  相似文献   

4.
Calculations of the topography and shape of planetary bodies are presented for two sets of models. One set of models deals with the effects of static loading on bodies, taking into account strengths of materials, density, and size. The other set considers the effects of creep deformation on model bodies of differing composition, size and temperature. Application of these models to asteroids and satellites of the major planets indicates that model, even the largest asteroids could retain highly nonspherical shapes, and the four large satellites of Jupiter could sustain statically loaded topography on the order of 10 km. (2) If silicate asteroids have not been heated to near the melting temperature of silicates, initial topography should survive for at least 109 yr under creep deformation. Topography on an insulated icy asteroid will be rapidly reduced if it is of larger scale than the insulating layer, no matter what the thermal history. (3) Of the Galilean satellites of Jupiter, J1 and J2 should retain topography created on silicate surfaces since their formation (or since the surfaces were near the silicate melting temperature. If ice layers of any significant thickness exist, topography on a scale smaller than the layer's thickness will be reduced rapidly. (4) J4 and J3 probably fit an icy model throughout and topography of all scales may be reduced with relaxation times < 106yr. These satellites are thus likely to preserve only very recent features on their surfaces, in contrast to the other Galilean satellites. If melting has taken place since formation, these conclusions become even stronger. (5) Of the satellites of the other planets, only Titan appears likely to have undergone topographic reduction by creep, under the models presented. However, if ices other than water are present in large proportion on these satellites relaxation times for topography may be shorter than calculated from the water ice models.  相似文献   

5.
The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913–2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J 2 = (1.9 ± 0.3) × 10−7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at ftp://qua-sar.ipa.nw.ru/incoming/EPM2004.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 202–213.Original Russian Text Copyright © 2005 by Pitjeva.  相似文献   

6.
A summary is given about the Minor Planet survey performed in 1986 on Tautenburg Schmidt plates. There were discovered 129 asteroids and calculated 312 positions for them. These are 29 numbered objects and 100 asteroids with provisional designations, six of them have no new designations. Tautenburg observations could give a tribute to five planets numbered in the period of this report, including the asteroid 1981 VW1 discovered in Tautenburg which received the number (3499) and the name Hoppe.  相似文献   

7.
On the basis of the results by Huang et al. (1990), this paper further discusses and analyses the four post-Newtonian effects in a near-Earth satellite orbit: the Schwarzschild solution, the post-Newtonian effects of the geodesic precession, the Lense-Thirring precession and the oblateness of the Earth. A full analytical solution to the effects including their direct perturbations and mixed perturbations due to the Newtonian oblateness (J 2) perturbation and the Schwarzschild solution is obtained using the quasi-mean orbital element method analogous to the Kozai's mean orbital element one. Some perturbation properties of the post-Newtonian effects are revealed. The results obtained not only can provide a sound scientific basis for the precise determination of a man-made satellite orbit but also is suitable for similar mechanics systems, such as the motions of planets, asteroids and natural satellites.  相似文献   

8.
Es wird eine Übersicht gegeben über die im Jahr 1991 auf Tautenburger Schmidtplatten gefundenen Kleinen Planeten. Es wurden 533 Objekte beobachtet und für diese 2066 Positionen gerechnet. Es handelt sich um 456 Planetoiden mit provisorischer Bezeichnung, unter denen 324 neu vergebene Bezeichnungen sind, sowie um 77 numerierte Objekte. Für Tautenburger Objekte wurden 250 Bahnen aus einer Opposition gerechnet. Für 54 im Berichtszeitraum numerierte Planeten, darunter befinden sich auch (4999) MPC und (5000) IAU, haben Tautenburger Positionen einen Beitrag geleistet. Neun Tautenburger Planetoiden wurden numeriert (Tab. 3). A summary is given about the Minor Planet survey performed in 1991 on Tautenburg Schmidt plates. 533 asteroids were observed and 2066 positions are calculated for them. These are 456 asteroids with provisional designations (324 of them have new designations) and 77 numbered objects. One-opposition orbits have been computed for 250 Teutenburg asteroids. Tautenburg observations could give a tribute to 54 planets numbered in the period of this report, among them are (4999) MPC and (5000) IAU, too. Nine Tautenburg asteroids have been numbered (Tab. 3).  相似文献   

9.
J.G. Hills 《Icarus》1973,18(3):505-522
The physically reasonable assumption that the seed bodies which initiated the accretion of the individual asteroids, planets, and comets (subsequently these objects are collectively called planetoids) formed by stochastic processes requires a radius distribution function which is unique except for two scaling parameters: the total number of planetoids and their most probable radius. The former depends on the ease of formation of the seed bodies while the second is uniquely determined by the average pre-encounter velocity, V, of the accretable material relative to an individual planetoid. This theoretical radius function can be fit to the initial asteroid radius distribution which Anders (1965) derived from the present-day distribution by allowing for fragmentation collisions among the asteroids since their formation. Normalizing the theoretical function to this empirical distribution reveals that there were about 102 precollision asteroids and that V = (2?4) × 10?2 km/sec which was presumably the turbulent velocity in the Solar Nebula. Knowing V we can determine the scale height of the dust in the Solar Nebula and consequently its space density. The density of accretable material determines the rate of accretion of the planetoids. From this we find, for example, that the Earth formed in about 8 × 106 yr and it attained a maximum temperature through accretion of about 3 × 103°K. From the total mass of the terrestrial planets and the theoretical radius function we find that about 2 × 103 planetoids formed in the vicinity of the terrestrial planets. Except for the asteroids the smaller planetoids have since been accreted by the terrestrial planets. About 15% of the present mass of the terrestrial planets was accumulated by the secondary accretion of these smaller primary planetoids. There are far fewer primary planetoids than craters on the Moon or Mars. The craters were likely produced by the collisional breakup of a few primary planetoids with masses between one-tenth and one lunar mass. This deduction comes from comparing the collision cross sections of the planetoids in this mass range to that of the terrestrial planets. This comparison shows that two to three collisions leading to the breakup of four to six objects likely occurred among these objects before their accretion by the terrestrial planets. The number of these fragments is quite adequate to explain the lunar and Martin craters. Furthermore the mass spectrum of such fragments is a power-law distribution which results in a power-law distribution of crater radii of just the type observed on the Moon and Mars. Applying the same analysis to the planetoids which formed in the vicinity of the giant planets reveals that it is unlikely that any fragmentation collisions took place among them before they were accreted by these planets due to the integrated collision cross section of the giant planets being about three orders of magnitude greater than that of the terrestrial planets. We can thus anticipate a marked scarcity of impact craters on the satellites of these outer planets. This prediction can be tested by future space probes. Our knowledge of the radius function of the comets is consistent with their being primary planetoids. The primary difference between the radius function of the planetoids which formed in the inner part of the solar system and that of the comets results from the fact that the seed bodies which grew into the comets formed far more easily than those which grew into the asteroids and the terrestrial planets. Thus in the outer part of the Solar Nebula the principal solid material (water and ammonia snow) accreted into a huge (~1012+) number of relatively small objects (comets) while in the inner part of the nebula the solid material (hard-to-stick refractory substances) accumulated into only a few (~103) large objects (asteroids and terrestrial planets). Uranus and Neptune presumably formed by the secondary accretion of the comets.  相似文献   

10.
Ishan Sharma 《Icarus》2009,(2):636-654
Many new small moons of the giant planets have been discovered recently. In parallel, satellites of several asteroids, e.g., Ida, have been found. Strikingly, a majority of these new-found planetary moons are estimated to have very low densities, which, along with their hypothesized accretionary origins, suggests a rubble internal structure. This, coupled to the fact that many asteroids are also thought to be particle aggregates held together principally by self-gravity, motivates the present investigation into the possible ellipsoidal shapes that a rubble-pile satellite may achieve as it orbits an aspherical primary. Conversely, knowledge of the shape will constrain the granular aggregate's orbit—the closer it gets to a primary, both primary's tidal effect and the satellite's spin are greater. We will assume that the primary body is sufficiently massive so as not to be influenced by the satellite. However, we will incorporate the primary's possible ellipsoidal shape, e.g., flattening at its poles in the case of a planet, and the proloidal shape of asteroids. In this, the present investigation is an extension of the first classical Darwin problem to granular aggregates. General equations defining an ellipsoidal rubble pile's equilibrium about an ellipsoidal primary are developed. They are then utilized to scrutinize the possible granular nature of small inner moons of the giant planets. It is found that most satellites satisfy constraints necessary to exist as equilibrated granular aggregates. Objects like Naiad, Metis and Adrastea appear to violate these limits, but in doing so, provide clues to their internal density and/or structure. We also recover the Roche limit for a granular satellite of a spherical primary, and employ it to study the martian satellites, Phobos and Deimos, as well as to make contact with earlier work of Davidsson [Davidsson, B., 2001. Icarus 149, 375–383]. The satellite's interior will be modeled as a rigid-plastic, cohesion-less material with a Drucker–Prager yield criterion. This rheology is a reasonable first model for rubble piles. We will employ an approximate volume-averaging procedure that is based on the classical method of moments, and is an extension of the virial method [Chandrasekhar, S., 1969. Ellipsoidal Figures of Equilibrium. Yale Univ. Press, New Haven] to granular solid bodies.  相似文献   

11.
Data are presented for the 182 asteroids whose rotational properties are available in the literature. Plots are provided for the asteroid rotational frequency f and lightcurve amplitude Δm versus asteroid size; the latter is determined using standard methods if data are available but otherwise is estimated from asteroid albedos, selected depending on taxonomic type or orbital position. A linear least-squares fit to all the data shows that f increases with decreasing size, confirming McAdoo and Burns' (1973) result; this is demonstrated to be primarily caused by relatively more small non-C than C asteroids in our sample, coupled with a slower mean rotation rate for C asteroids (P ≈ 11 hr) than non-C asteroids (P ≈ 9 hr). In terms of the collisional theory of Harris (1979a), this means that the C's are less dense than the other minor planets. Any slight tendency for smaller asteroids to spin faster, even within a taxonomic type, could be due to selection effects; our data are not extensive enough to determine whether the very smallest (? 10-km diameter) spin especially fast. The minor planets of our survey become more irregular at smaller sizes, disputing the conclusions of Bowell (1977b), Degewij (1977), and Degewij et al. (1978), based on other, perhaps more complete, data; selection effects may account for this disagreement. Shapes do not appear to depend on taxonomic type. The dispersion of asteroid rotation rates from the mean is found to be in excellent agreement with a three-dimensional Maxwellian distribution, such as would be developed in a collisionally evolved system. The rotation axes, therefore, appear to be randomly oriented in space. Rotation pole positions are also tabulated and calculated to likely be constant in space over the extent of past observation. Observers are encouraged to measure the rotational properties of faint objects and asteroids of unusual taxonomic types, and to carry out long-time studies of asteroids which over short periods do not seem to vary.  相似文献   

12.
We present a new experimental result of fragment spin-rate in impact disruption, using a thin glass plate. A cylindrical projectile impacts on a side (edge) of the plate. Dispersed fragments are observed using a high-speed camera and the spin rates of fragments are measured. We find that the measured fragment spin-rate decreases with increasing size. Assuming that the rotational energy of fragments is supplied from the residual stress, the spin rate ω decreases with increasing fragment size r as ωr−1, which explains the above experimental results. This size-dependence is similar to that of the observed spin rates of small fast-rotating asteroids. Our results suggest that spin rates of fragments of small asteroids immediately after disruption may have a similar size-dependence, and can provide constraints on the subsequent spin-state evolution of small asteroids due to thermal torques.  相似文献   

13.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   

14.
Es wird eine Übersicht gegeben über die im Jahr 1987 auf Tautenburger Schmidtplatten gefundenen Kleinen Planeten. Es wurden 290 Objekte entdeckt und für diese 845 Positionen gerechnet. Es handelt sich um 75 numerierte Objekte, von denen drei auf der kritischen Liste von EMP 1988 stehen, sowie um 215 Planetoiden mit provisorischen Bezeichnungen. Von letzteren erhielten 191 neue Bezeichnungen. Für 17 im Berichtszeitraum numerierte Planeten haben Tautenburger Beobachtungen einen Beitrag geleistet. Darunter sind zwei in Tautenburg entdeckte Planetoiden: 1967 GF1 erhielt die Nummer (3539) und den Namen Weimar, der Trojaner 1973 UF5 die Nummer (3540) und den Namen Protesilaos. A summary is given about the Minor Planet survey performed in 1987 on Tautenburg Schmidt plates. There were discovered 290 asteroids and calculated 845 positions for them. These are 75 numbered objects and 215 asteroids with provisional designations, 191 of them have new designations. Tautenburg observations could give a tribute to 17 planets numbered in the period of this report, including two asteroids discovered in Tautenburg: 1967 GF1 received the number (3539) and the name Weimar, the Trojans 1973 UF5 the number (3540) and the name Protesilaos.  相似文献   

15.
制约卫星轨道寿命的另一种机制   总被引:2,自引:0,他引:2  
王歆  刘林 《天文学报》2002,43(2):189-196
近点共振会导致太阳系小天体(小行星,自然卫星以及大行星和月球的人造卫星)的轨道偏心率出现变幅较大的长周期变化,特别是以月球和大行星为中心天体的大倾角轨道(确切地说是倾角接近90°的极轨道)卫星,由于类似的原因,偏心率的增大而导致近星距rp=a(1-e)≤ae(ae是中心天体的赤道半径),使其落到中心天体上,结束轨道寿命,这与耗散机制大不相同,因此将对其作理论分析,并以计算实例加以证实.  相似文献   

16.
The distribution of ejecta from impact craters significantly affects the surface characters of satellites and asteroids. In order to understand better the distinctive features seen on Phobos, Deimos, and Amalthea, we study the dynamics of nearby debris but include several factors — planetary tides plus satellite rotation and nonspherical shape-that complicate the problem. We have taken several different approaches to investigate the behavior of ejecta from satellites near planets. For example, we have calculated numerically the usual pseudoenergy (Jacobi) integral. This is done in the framework of a restricted three-body problem where we model the satellites as triaxial ellipsoids rather than point masses as in past work. Iso-contours of this integral show that Deimos and Amalthea are entirely enclosed by their Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presumably this was once also the case for Phobos, before tidal evolution brought it so close to Mars. Presently the surface of Phobos overflows its Roche lobe, except for the regions within a few kilometers of the sub- and anti-Mars points. Thus most surface material on Phobos is not energetically bound: nevertheless it is retained by the satellite because local gravity has an inward component everywhere. Similar situations probably prevail for the newly discovered satellite of Jupiter (J14) and for the several objects found just outside Saturn's rings. We have also examined the fate of crater ejecta from the satellites of Mars by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane. The ejecta behavior depends dramatically on the longitude of the primary impact, as well as on the speed and direction of ejection. Material thrown farther than a few degrees of longitude remains in flight for an appreciable time. Over intervals of an hour or more, the satellites travel through substantial arcs of their orbits, so that the Coriolis effect then becomes important. For this reason the limit of debris deposition is elongated toward the west while debris thrown to the east escapes at lower ejection velocities. We display some typical trajectories, which include many interesting special effects, such as loops, cusps, “folded” ejecta blankets, and even a temporary satellite of Deimos. Besides being important for understanding the formation of surface features on satellites, our work is perhaps pertinent to regolith development on small satellites and asteroids, and also to the budgets of dust belts around planets.  相似文献   

17.
The principal dynamical properties of the planetary and satellite systems listed in Section 2 require these bodies to have condensed in highly-flattened nebulae which provided the dissipation forces that produced the common directions of orbital motion, and the lowe andi values. Minimum masses of these nebulae can be estimated on the assumption that the initial solar abundances apply, starting from the empirical data on present planetary and satellite compositions and masses. The asteroids and comets are assumed to be direct condensations and accretion products in their respective zones (2–4 AU and 20–50 AU), without the benefit of gravitational instability in the solar nebula, owing to the comparatively low density there; with gravitational instability accelerating and ultimately dominating the accretion of the planets and major satellites, in zones approaching and exceeding the local Roche density. Only in the case of Jupiter, gravitational instability appears to have dominated from the outset; the other planets are regarded as hybrid structures, having started from limited accretions. In Section 3 the empirical information on protostars is reviewed. ‘Globules’ are described, found to have the typical range of stellar masses and with gaseous compositions now well known thanks largely to radio astronomy. They contain also particulate matter identified as silicates, ice, and probably graphite and other carbon compounds. The measured internal velocities would predict a spread of total angular momenta compatible with the known distribution of semi-major axes in double stars. The planetary system is regarded as an ‘unsuccessful’ binary star, in which the secondary mass formed a nebula instead of a single stellar companion, with 1–2% of the solar mass. This mass fraction gives a basis for an estimate of thefrequency of planetary systems. The later phases of the globules are not well known empirically for the smaller masses of solar type; while available theoretical predictions are mostly made for non-rotating pre-stellar masses. Section 5 reviews current knowledge of the degree of stability of the planetary orbits over the past 4.5×109 yr, preparatory to estimates of their original locations and modes of origin. The results of the Brouwer and Van Woerkom theory and of recent numerical integrations by Cohenet al. indicate no drastic changes in Δa/a over the entire post-formation history of the planets. Unpublished numerical integrations by Dr P. E. Nacozy show the remarkable stability of the Jupiter-Saturn system as long as the planetary masses are well below 29 times their actual values. Numerical values of Δa/a are collected for all planets. The near resonances found for both pairs of planets and of satellites are briefly reviewed. Section 6 cites the statistics on the frequency and masses of asteroids and information on the Kirkwood gaps, both empirical and theoretical. An analogous discussion is made for the Rings of Saturn, including its extension observed in 1966 to the fourth Saturn satellite, Dione. The reality, or lack of it, of the divisions in the Rings are considered. The numbers of Trojan asteroids are reviewed, as is the curious, yet unexplained, bimodal distribution of their orbital inclinations. Important information comes from the periods of rotation of the asteroids and the orientation of their rotational axes. The major Hirayama families are considered as remnants of original asteroid clusterings whose membership has suffered decreases through planetary perturbations. Other families with fewer large members may be due to collisions. The three main classes of meteorites, irons, stones, and carbonaceous chondrites all appear to be of asteroidal origin and they yield the most direct evidence on the early thermal history of the solar system. While opinion on this subject is still divided, the author sees in the evidence definite confirmation of thecold origin of the planetary system, followed by ahot phase due to the evolving sun that caused the dissolution of the solar nebula. This massive outward ejection, that included the smaller planetesimals, appears to have caused the surface melting of the asteroids by intense impact, with the splashing responsible for the formation of the chondrules. The deep interiors of the asteroids are presumably similar to the C1 meteorites which have recently been found to be more numerous in space by two orders of magnitude than previously supposed.  相似文献   

18.
The triaxial figures are very common shape of most of planetary satellites as well as of smaell bodies as asteroids. There are 21 satellites in the Solar System triaxial figures of which were detected in situ evidently (Davies et al., 1995). However, the total number of triaxiaxial satellites in the Solar System should be in fact larger. In this paper the general theory of triaxiality due to tidal forces is discussed in regard to the very recent numerical data. Since they orbit synchronously, as a rule: their orbital periods are equal to the rotational periods, the tidal forces may be responsible for their triaxial figures. On the other hand the origin of triaxiality of asteroids due to another process and the of their figures cannot be axplained by the tidal effects.  相似文献   

19.
The surface reflectance properties of the irregular outer planets satellites are probed for evidence for the presence of aqueous alteration products on their surfaces using the strong correlation between the 3.0-μm water of hydration absorption feature and the 0.7-μm Fe2+ → Fe3+ oxidized iron feature seen in low-albedo asteroid reflectances, in an effort to expand our understanding of the composition of the precursor bodies from which the dynamical satellite clusters are derived. Equations converting Johnson V and Kron-Cousins RI photometry to Eight Color Asteroid Survey v (0.550 μm), w (0.701 μm), and x (0.853 μm) photometry are derived from relationships defined by Howell (1995, Ph.D. thesis), and coupled with an algorithm previously defined to detect the presence of the 0.7-μm absorption feature in ECAS asteroid photometry [Vilas, F., 1994. Icarus 111, 456-467]. Broadband VRI photometry of Ch-class Asteroid 19 Fortuna acquired during 2004 confirms the efficacy of this method of identifying the presence of the 0.7-μm feature. Photometric observations of many recently discovered irregular outer jovian, saturnian, uranian, and neptunian satellites, coupled with limited asteroid spectroscopy, were examined for the presence of aqueous alteration. The dynamical clusters of outer irregular jovian satellites are mixed between objects that do and do not show this absorption feature. Multiple observations of some objects test both positively and negatively, similar to the surface variegation that has been observed among many C-class asteroids in the main asteroid belt. Evidence for aqueous alteration on these jovian satellites augers for an origin in or near the same location as the asteroids now occupying the aqueous alteration zone (2.6-3.5 AU), at heliocentric distances internal to Jupiter's orbit. Among the saturnian irregular satellites, only S IX Phoebe shows limited evidence of aqueous alteration from ground-based observations. The other satellites show no sign of this feature, and have general reflectance properties very similar to the D-class asteroids, supporting an origin for their precursor bodies in the outer Solar System, perhaps the Centaur region. Only two uranian satellites were tested: U XVII Caliban tests positively for the feature. The differences in surface reflectance properties support the idea that Caliban and U XVI Sycorax derive from separate parent bodies. One observation of neptunian satellite N II Nereid shows no sign of this absorption feature.  相似文献   

20.
We identified the family of the binary asteroid 423 Diotima consisting of 411 members in the phase space of orbital elements—semimajor axes a (or mean motions n), eccentricities e, and inclinations i—by using an electronic version of the ephemerides of minor planets EMP-2003 containing osculating orbital elements for 34992 asteroids of the main belt. The 9/4 resonance with Jupiter clearly separates the family of 423 Diotima from the family of Eos, which, according to EMP for 2003, contains 1204 asteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号