首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of São Luis (2.33°S; 44.21°W; dip latitude 1.3°S), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at São Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above São Luis, whereas the north–south asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4 > 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

2.
The occurrence of strong ionospheric scintillations with S4≥0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.  相似文献   

3.
本文利用位于我国中南部电离层闪烁监测台网2012年至2015年的观测数据,比较分析了GPS(Global Positioning System)信号闪烁与周跳的统计特征以及太阳活动和地磁扰动对闪烁与周跳的影响.结果表明,闪烁活动与周跳出现随地方时、月份、太阳活动和地磁扰动变化的统计特征类似,且周跳出现的可能性随S4指数增高显著增大,说明闪烁与周跳存在密切的关联,是引起周跳的一种重要因素.一天之中,闪烁和周跳主要出现在日落后至黎明前,午夜前出现最频繁,白天仅偶尔出现.在赤道异常峰及其邻近区域,一年之中,闪烁和周跳主要出现在春秋季,春季闪烁活动和周跳出现明显比秋季频繁,呈现春秋不对称性,冬夏季节闪烁和周跳都很少出现.闪烁活动与周跳出现的逐年变化显著依赖太阳活动水平,随太阳活动水平升高而增强,而地磁扰动与闪烁活动与周跳出现呈负相关,地磁扰动对闪烁活动与周跳出现整体上起抑制作用.平均而言,越靠近磁赤道的台站闪烁活动越频繁,随纬度升高,闪烁活动频次逐渐降低,且闪烁活动的开始时间随纬度升高而滞后,暗示引起GPS信号闪烁的电离层不规则结构主要起源于磁赤道区.此外,分析还发现,闪烁活动与周跳出现的空域有相当好的一致性,主要分布在观测点上空仰角55°以下、方位角150°~240°的空域内.  相似文献   

4.
The effects of geomagnetic storm on GPS ionospheric scintillations are studied here using GPS scintillation data recorded at Sanya (18.3°N, 109.5°E; geomagnetic: 7.6°N, 180.8°E), the southmost station in the Chinese longitude region. GPS scintillation/TEC and DMSP data are utilized to show the development of irregularities during the period year 2005 (solar minimum). Statistical analysis of K planetary index (Kp) and amplitude scintillation index (S4) indicates that most storms of the year did not trigger the scintillation occurrence at Sanya. However, cases of scintillation occurring during moderate and strong storm (Dst<−100) periods show clearly that the development of irregularities producing scintillations can be triggered by geomagnetic storms during the low scintillation occurrence season. The effects (trigger or not trigger/inhibit) depend on the maximum dDst/dt determined local time sector, and can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance electric fields. For station Sanya, the maximum dDst/dt determined local time is near the noon (or post-midnight) sector for most storms of the year 2005, which inhibited (or did not trigger) the post-sunset (or post-midnight) scintillation occurrence and then led to the phenomena that the statistical results presented.  相似文献   

5.
本文利用GPS-CHAMP高分辨率的掩星探测数据,考察了E_S层不规则结构随地理经度和随季节、倾角磁纬与太阳活动的变化特征.研究发现,E_S层不规则结构的经度变化以波数1~5分量为主,呈现出多重波数特征.在低纬度带存在显著的波数4分量,其幅度存在季节依赖,在夏季和秋季明显高于春季和冬季.E_S层不规则结构出现率随倾角磁纬的变化表现为赤道区和中纬度区较低,低纬区和极区较高.E_S层不规则结构出现率的季节变化和年均值的逐年变化表现为夏季出现最频繁,秋季次之,冬春季最弱,随太阳活动水平的减弱而降低.  相似文献   

6.
With increasing reliance on space-based platforms for global navigation and communication, concerns about the impact of ionospheric scintillation on these systems have become a high priority. Recently, the Air Force Research Laboratory (AFRL) performed amplitude scintillation measurements of L1 (1.575 MHz) signals from GPS satellites at Ascension Island (14.45° W, 7.95° S; magnetic latitude 16° S) during February–April, 1998, to compare amplitude scintillations with fluctuations of the total electron content (TEC). Ascension Island is located in the South Atlantic under the southern crest of the equatorial anomaly of F2 ionization where scintillations will be much enhanced during the upcoming solar maximum period. Ascension Island is included in the global network of the International GPS Service (IGS) and the GPS receivers in this network report the carrier to noise (C/N) ratio, the dual frequency carrier phase and pseudorange data at 30-s intervals. Such data with a sampling interval of 30 s were analyzed to determine TEC, the rate of change of TEC (ROT) and also ROTI, defined as the standard deviation of ROT. The spatial scale of ROTI, sampled at 30 s interval, will correspond to 6 km when the vector sum of the ionospheric projection of the satellite velocity and the irregularity drift orthogonal to the propagation path is of the order of 100 m/s. On the other hand, the scale-length of the amplitude scintillation index corresponds to the Fresnel dimension which is about 400 m for the GPS L1 frequency and an ionospheric height of 400 km. It is shown that, in view of the co-existence of large and small scale irregularities in equatorial irregularity structures, during the early evening hours, and small magnitude of irregularity drifts, ROTI measurements can be used to predict the presence of scintillation causing irregularities. The quantitative relationship between ROTI and S4, however, varies considerably due to variations of the ionospheric projection of the satellite velocity and the ionospheric irregularity drift. During the post-midnight period, due to the decay of small scale irregularities leading to a steepening of irregularity power spectrum, ROTI, on occasions, may not be associated with detectable levels of scintillation. In view of the power law type of irregularity power spectrum, ROTI will, in general, be larger than S4 and the ratio, ROTI/S4, in the present dataset is found to vary between 2 and 10. At high latitudes, where the ionospheric motion, driven by large electric fields of magnetospheric origin, is much enhanced during magnetically active periods, ROTI/S4 may be considerably larger than that in the equatorial region.  相似文献   

7.
L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations observed from Kolkata (22.58°N lat, 88.38° E long, 32°N dip), over a solar cycle 1996–2006 are presented in this paper. Situated near the northern crest of the equatorial anomaly, it is an excellent platform for scintillation studies. Based on 11 years’ data, an attempt is made to develop models of hourly percentage occurrence of scintillations for the rising and declining phases of solar cycle using Neural Network. The relation between fading rate at VHF with the S4 index at L-band is also investigated.  相似文献   

8.
This study investigated a long-term climatology of nocturnal equatorial F-region irregularities by using phase fluctuations of the global positioning system during the solar cycle of 1996–2006 at the west Pacific longitudes. The results showed that the distribution of the occurrence of irregularities is a two-peak pattern, which peaks in equinoxes with a shallow/deep dip in June/December solstice during high solar activity but with two about the same dips in magnitude in both June and December solstices during low solar activity. Moreover, the most interesting longitudinal effect in the area is in solstice occurrences of irregularities during high solar activity that the irregularities in December solstice months develop easier in the west area but those in June solstice months develop easier in the east area.  相似文献   

9.
太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS卫星观测数据,研究了太阳活动低年夏季我国低纬电离层F区场向不规则体的基本特征.分析发现无论磁静日还是磁扰日,夏季电离层F区不规则体回波主要出现于地方时午夜以后,回波出现的时间较短,高度范围较小,伴随着扩展F出现,但没有同时段的L波段电离层闪烁.太阳活动低年夏季午夜后的低纬电离层F区不规则体回波,可能并不总是与赤道等离子体泡沿磁力线向低纬地区的延伸相关,而可能由本地Es等扰动过程引起.  相似文献   

10.
The ionosphere often becomes turbulent and develops electron density irregularities. These irregularities scatter radio waves to cause amplitude and phase scintillation and affect satellite communication and GPS navigation systems. The effects are most intense in the equatorial region, moderate at high latitudes and minimum at middle latitudes. The thermosphere and the ionosphere seem to internally control the generation of irregularities in the equatorial region and its forcing by solar transients is an additional modulating factor. On the other hand, the irregularity generation mechanisms in the high-latitude ionosphere seem to be driven by magnetospheric processes and, therefore, high-latitude scintillations can be tracked by following the trail of energy from the sun in the form of solar flares and coronal mass ejections. The development of a global specification and forecast system for scintillation is needed in view of our increased reliance on space-based communication and navigation systems, which are vulnerable to ionospheric scintillation. Such scintillation specification systems are being developed for the equatorial region. An equatorial satellite equipped with an appropriate suite of sensors, capable of detecting ionospheric irregularities and tracking the drivers that control the formation of ionospheric irregularities, has also been planned for the purpose of specifying and forecasting equatorial scintillations. In the polar region, scintillation specification and forecast systems are yet to emerge although modeling and observations of polar cap plasma structures, their convection and associated irregularities have advanced greatly in recent years. Global scintillation observations made during the S-RAMP Space Weather Month in September 1999 are currently being analyzed to study the effects of magnetic storms on communication and navigation systems.  相似文献   

11.
Global Positioning System (GPS) derived total electron content (TEC) measurements were analyzed to investigate the ionospheric response during the X-class solar flare event that occurred on 5-6 December 2006 at geomagnetic conjugate stations: Syowa, Antarctica (SYOG) (GC: 69.00°S, 39.58°E; CGM: 66.08°S, 71.65°E) and árholt, Iceland (ARHO) (GC: 66.19°N, 342.89°E; CGM: 66.37°N, 71.48°E). Bernese GPS software was used to derive the TEC maps for both stations. The focus of this study is to determine the symmetry or asymmetry of TEC values which is an important parameter in the ionosphere at conjugate stations during these solar flare events. The results showed that during the first flares on 5 December, effects were more pronounced at SYOG than at ARHO. However, on 6 December, the TEC at ARHO showed a sudden spike during the flare with a different TEC variation at SYOG.  相似文献   

12.
Equatorial spread-F (ESF) backscatter plumes are often observed in radar range-time-intensity (RTI) maps at low latitude. Except case studies, few statistical investigations on the onset locations of scintillation-producing ESF plumes at given sites have been conducted. In this study, a statistical analysis is carried out on onset locations of ESF backscatter plumes observed at a low-latitude location Sanya (18.4°N, 109.6°E; dip lat 12.8°N) during equinoctial months of 2013. By employing a tracing method to locate backscatter plumes, we estimate the onset longitudes of periodic plumes obtained from the Sanya VHF radar five-beam steering measurements. The results show that the inter-plume distances (in longitude) are mostly confined within 200–600 km, and the ESF plumes producing ionospheric scintillations over Sanya are almost exclusively generated at the longitudes of 94°–110°E. The results indicate the necessity to monitor ESF plume initial generation in the longitude region of 94°–110°E to better understand the day-to-day variability in the occurrence of ionospheric scintillations over Sanya.  相似文献   

13.
中国低纬度地区电离层闪烁效应模式化研究   总被引:3,自引:1,他引:3       下载免费PDF全文
GPS(Global Positioning System)周跳是一种GPS信号异常现象.研究发现一定仰角以上的GPS周跳与电离层闪烁有关,是强电离层闪烁造成的GPS载波信号短时失锁现象,因此其可作为表征电离层闪烁效应的参量.本文通过分析由中国低纬度地区GPS台站原始观测数据提取的GPS周跳发生率与地方时、季节、太阳活动以及磁活动之间的关系,开展电离层闪烁效应与这几种参量之间关系的模式化研究.研究结果表明:(1)周跳发生率存在着地方时分布,发生时段主要在日落19:00LT后到午夜02:00LT之前,发生次数在22:00LT左右达到极大,然后缓慢减少,这一变化特点可以用自变量为地方时的Chapman函数形式来描述;(2)周跳发生率存在年变化特点,主要发生在年积日45~135天(春分季节)和225~315天(秋分季节),可以通过高斯函数来描述每个分季闪烁效应的变化特点;(3)可以利用太阳辐射指数F10.7作为描述周跳随太阳活动周变化的参量,根据周跳随太阳活动周的变化特点,我们使用一个以F10.7为自变量的三次函数来描述这种变化;(4)电离层闪烁与磁活动的关系比较复杂,由于大多数情况下表现为磁活动对电离层闪烁的抑制作用,在本研究中使用一个以地磁活动指数Ap为自变量的的平方根函数来拟合这种变化.  相似文献   

14.
穿过电离层不规则体传播后的无线电波,其振幅和相位出现快速随机起伏,即电离层闪烁.为了量化电离层不规则体和相位闪烁的强度,本文提出用TEC起伏δTEC作为特征参量,并用δTEC的标准差构建一种新指数σtec.文中证明指数σtec与相位闪烁指数完全等效.在电离层强闪烁期间,经常出现信号短暂失锁和周跳,导致TEC值突跳和不连续.为此,本文设计了一种周跳检测与校正的批处理算法,用于消除TEC值突跳.在此基础上,利用位于我国中南部电离层闪烁监测台网2012—2015年的观测数据,考察了GPS信号相位闪烁和不规则体的统计特征.结果表明,我国低纬电离层不规则体和相位闪烁与振幅闪烁随地方时和月份变化的特征类似,一天之中主要出现在日落后至黎明前,一年之中,春季不规则体出现最频繁、秋季次之,呈现春秋不对称性,冬夏季出现很少.此外,我们还比较分析了指数S4与σtec的联系,两者之间显著正相关表明,小于第一菲涅尔带尺度的小尺度不规则体和大于第一菲涅尔带尺度的大尺度不规则体一般同时存在.  相似文献   

15.
The FORMOSAT-3/COSMIC (F3/C) satellite probes the S4 scintillation index profile of GPS signals by using the radio occultation (RO) technique. In this study, for practical use on the Earth’s surface, a method is developed to convert and integrate the probed RO S4 index, so obtaining the scintillation on the ground. To estimate the worst case, the maximum value on each profile probed by F3/C, which is termed S4max, is isolated. The isolated data are further used to construct the global three-dimensional distributions of S4max for various local times, seasons, solar activities, and locations. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low-latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200–0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors.  相似文献   

16.
The characteristics of ionospheric scintillations at Rajkot in the equatorial anomaly crest region in India are described for the years 1987–1991 by monitoring the 244-MHz transmission from the satellite FLEETSAT. This period covers the ascending phase of solar cycle 22. Scintillations occur predominantly in the pre-midnight period during equinoxes and winter seasons and in the post-midnight period during summer season. During equinoxes and winter, scintillation occurrence increases with solar activity, whilst in summer it is found to decrease with solar activity. Statistically, scintillation occurrence is suppressed by magnetic activity. The characteristics observed during winter and equinoxes are similar to those seen at the equatorial station, Trivandrum. This, coupled with the nature of the post-sunset equatorial F-region drift and hF variations, supports the view that at the anomaly crest station, scintillations are of equatorial origin during equinox and winter, whilst in summer they may be of mid-latitude type. The variations in scintillation intensity (in dB) with season and solar activity are also reported.  相似文献   

17.
为构建赤道-低纬电离层不规则结构和闪烁活动出现率的理论模型,本文根据分析赤道-低纬电离层的广义Rayleigh-Taylor(R-T)不稳定性得到的三维线性增长率的表达式,计算分析了线性增长率随地方时的变化特征.并选取计算得到的每日增长率的极大值表征每日的线性增长率,分析增长率随季节、太阳活动和地理经度的变化特征以及逐日变化特征,建立三维广义R-T不稳定性线性增长率的理论统计特征模型,发现增长率表现出显著的随地方时、季节、太阳活动和地理经度以及逐日变化特征.通过比较分析增长率的变化特征与不规则结构和闪烁活动的变化特征,发现三维广义R-T不稳定性的线性增长率能较好地反映不规则结构和闪烁活动随季节、太阳活动、地理经度以及逐日变化规律.本文建立的R-T不稳定性的三维线性增长率的统计特征模型可用于构建赤道-低纬电离层不规则结构和闪烁出现率的理论形态特征模型.  相似文献   

18.
The statistics of pre-midnight 5-m irregularities in the equatorial F region over São Luís is presented. The data set ranges from October 2001 to December 2008 and covers maximum solar-flux-to-minimum solar flux epoch. The variabilities in irregularity parameters, namely, height and time of their appearance in the radar echoes, with solar-flux variation are presented. The seasonal variations (combined over all years, irrespective of solar-flux) of occurrence of irregularities, occurrence of bottom-type layer (or bottom-side irregularities without plume) and bottom-side/topside plume (or bottom-side irregularities with plume) are presented. The largest occurrences of bottom-side irregularities without plume and with plume are found on April (equinox) and December (summer) months respectively. The ambient ionospheric conditions namely prereversal evening vertical drift, bottom-side density gradient and off-equatorial E region conductivity are inferred using digisonde measurements during April 2002 and December 2002. Based on these conditions and recent studies on gravity wave climatology over Brazil, it is suggested that shear in zonal plasma drift and low gravity wave activity may account for less occurrence of plume during April as compared to December months. This suggestion is quantified using numerical simulation model of collisional-interchange instability (CII) and plasma bubble.  相似文献   

19.
电离层不规则结构漂移的GPS测量及其初步结果   总被引:4,自引:1,他引:3       下载免费PDF全文
本文阐述了利用GPS接收机台阵测量到的闪烁和TEC变化率ROT快速起伏图样估计F层不规则结构漂移的原理和方法,并利用实测数据估计了静日和暴时电离层不规则结构的水平漂移速度.短间距台网和超短间距台链观测实例的计算结果表明,暴时武汉地区引起TEC快速起伏的电离层不规则结构沿纬圈向西漂移,21∶30至03∶00 LT,西向漂移速度在约40 m/s至130 m/s的范围内变化;在桂林地区,磁静日午夜前后引起L波段电波闪烁的电离层不规则结构沿纬圈向东漂移,漂移速度从约70 m/s下降到约55 m/s,磁扰日午夜前不规则结构向西漂移,速度从约150 m/s下降到约50 m/s,午夜后转为向东漂移,速度从约25 m/s上升到约65 m/s.文中还提出了由单站多卫星观测估计F层不规则结构漂移的设想.实例分析与计算结果表明,利用单站多卫星观测估计电离层不规则结构漂移是一种合理可行的方法.  相似文献   

20.
The paper presents a study of solar and magnetic activity effects on VHF ionospheric scintillations recorded during three and half years at Bhopal, a station near the northern crest of the equatorial anomaly in India. During E- (equinox) and D- (winter) months, scintillations occur mainly in the pre-midnight period whereas during J- (summer) months their occurrence is larger in the post-midnight period. Very intense scintillations (>20 dB) mainly occur in the pre-midnight period, and in the post-midnight period, the scintillations are generally moderate (5–10 dB) or weak (<5 dB). The nocturnal scintillation occurrence decreases with the decrease in solar activity from 1989 to 1992. Monthly mean scintillation occurrence changes according to solar activity during E- and D-months but not so during J-months. The effects of magnetic activity on scintillations vary with season and, in general, inhibit the scintillation occurrence in the pre-midnight period and enhance it a little in the post-midnight period, especially after 0300 hours IST (Indian Standard Time). For most of the severe magnetic storms in which Dst goes below −125 nT and the recovery phase starts in the post-midnight to dawn local time sector, strong post-midnight scintillations, which sometimes extend for several hours beyond the local sunrise, are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号