首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
贾立  王介民 《高原气象》1994,13(3):359-368
  相似文献   

2.
Estimates of hourly transpiration from a 16–17 yr old Sitka spruce forest were calculated from the Penman-Monteith combination equation and compared with estimates from an eddy correlation/energy balance method.Canopy conductances were estimated from stomatal conductances measured using null balance diffusion porometers and took account of canopy variations of stomatal conductance and needle area index.Vertical heat fluxes were measured by the eddy correlation method; transpiration fluxes were then estimated from an energy balance of the forest.There was not a 1:1 relationship between the estimates of transpiration from the two methods. The major sources of error were concluded to be (i) difficulties of estimating the variation in stomatal conductance and leaf area through the canopy, (ii) errors in the value of total leaf area index, and (iii) errors in stomatal conductance measurements.The eddy correlation method was suggested as the more useful for future studies of the variation of forest transpiration in time or space, because the Penman-Monteith equation requires extensive biological measurements.  相似文献   

3.
4.
春小麦单叶气孔行为及蒸腾作用的模拟   总被引:1,自引:0,他引:1  
郑海雷  黄子琛 《高原气象》1992,1(4):423-430
  相似文献   

5.
陆地蒸散(ET)涵括地表和潮湿叶片的蒸发和植物的蒸散发,是陆地水循环的重要组成部分。Penman-Monteith方程是估算陆地蒸散的重要方法,方程中的叶片或冠层气孔导度是提高估算精度的关键因子。根据碳水循环的耦合原理,植物光合作用模型可用于估算叶片或冠层气孔导度。植物光合作用模型可分为三类:1)使用总冠层导度的大叶模型(BL),2)区别阴、阳叶冠层导度的双大叶模型(TBL),3)区别阴、阳叶叶片导度的双叶模型(TL)。与这三类光合作用模型相对应,衍生出基于不同导度计算方法的三种蒸散估算模型。三种蒸散模型之间的主要区别在于是否进行从叶片尺度到冠层尺度的气孔导度集成。这三种模型中,双叶模型使用叶片尺度的气孔导度,集成度最低。反之,大叶模型使用冠层尺度的气孔导度,集成度最高。由于在Penman-Monteith中,蒸腾和气孔导度之间的关系是非线性的,气孔导度的集合会导致负偏差。因此,与通量测量相比,大叶蒸散模型的估算偏差最大,而双叶蒸散模型的估算偏差最小。  相似文献   

6.
Transpiration of a 7 m-high Stika spruce forest was investigated using measurements of net radiation, sensible heat and ground heat fluxes in an energy balance to give latent heat flux, and hence canopy resistance from the Penman-Monteith equation. Sensible heat flux was measured by the eddy-correlation method using a Fluxatron circuit. During six consecutive days of measurement in July/August, canopy resistance typically followed a decreasing trend from high values (≈150 s m−1) at dawn to around 40 s m−1 at midday and then returning steadily to >100 s m−1 at sunset. Transpiration was 3 mm day−1 on average over the period studied and changes in the rate within the day were significantly correlated with changes in net radiation. Comparisons are drawn with published data from other forest sites and the conclusion is reached that it is imprudent to generalise about transpiration rates and canopy resistances of different species at different sites from results gathered at one or two places.  相似文献   

7.
Transpiration of a 7 m-high Stika spruce forest was investigated using measurments of net radiation, sensible heat and ground heat fluxes in an energy balance to give latent heat flux, and hence canopy resistance from the Penman-Monteith equation. Sensible heat flux was measured by the eddy-correlation method using a Fluxatron circuit.During six consecutive days of measurement in July/August, canopy resistance typically followed a decreasing trend from high values (150 s m-) at dawn to around 40 s m–1 at midday and then returning steadily to > 100 s m–1 at sunset. Transpiration was 3 mm day–1 on average over the period studied and changes in the rate within the day were significantly correlated with changes in net radiation.Comparisons are drawn with published data from other forest sites and the conclusion is reached that it is imprudent to generalise about transpiration rates and canopy resistances of different species at different sites from results gathered at one or two places.  相似文献   

8.
盘锦湿地芦苇群落蒸发散模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据2005年盘锦芦苇湿地监测站的小气候梯度监测数据和涡动通量观测数据,结合芦苇生理生态特性观测资料,采用波文比-能量平衡法、Penman-Monteith模型对盘锦湿地芦苇群落蒸发散进行模拟,并与涡动相关系统的实测资料进行比较。结果表明:Penman-Monteith模型更适合芦苇群落蒸发散的模拟,可为芦苇湿地蒸发散的计算提供依据。  相似文献   

9.
Water loss by evapotranspiration (ET) is a principal component of the hydrologic cycle in wetlands. Using micrometeorological techniques, we measured ET from a Sphagnum-dominated open fen in northcentral Minnesota (U.S.A.) from May to October in 1991 and 1992. The daily ET rate ranged from 0.2–4.8 mm d-1 with a growing season average of 3.0 mm d-1. The evapotranspiration rate of the fen was near the potential rate of open water evaporation when the vascular plants were actively growing and the water table level was within or above the rooting zone. Using a dual-source modification of the Penman-Monteith equation (Massman, 1992), we partitioned the measured ET into evaporation from the non-vascular Sphagnum surfaces and transpiration from vascular plants. The analysis indicated that about two thirds of the water vapour flux to the atmosphere was from evaporation when the Sphagnum surface was wet. Such an evaporative flux was expected because of vertical distribution of vascular plant leaves which had a small leaf area index (0.4–0.7) and intercepted only about 30% of net radiation (R n ) during the day. The remainder of R n was thus available for evaporation from Sphagnum. Evaporation significantly decreased as the Sphagnum surface dried out. When the water table was within the rooting zone (0–0.4 m), the vascular plants absorbed Sphagnum-generated sensible heat, which amounted up to one third of their transpiration energy flux. Under these conditions, the total water vapour flux remained near its potential rate owing to the enhanced transpiration from vascular plants. A drop in water table of 0.15–0.2 m below the hollow bottom during vascular plant senescence resulted in ET rates lower than the potential rates by 5–65%.  相似文献   

10.
The Penman-Monteith Big Leaf Model is expressed in terms of eight similarity variables. A simple relationship is derived relating these nondimensional variables to the inverse of the Monin-Obukhov length, L, multiplied by height. Placing this surface energy balance model within such a framework may be of use when coupling to atmospheric models where similarity variables have already been defined.  相似文献   

11.
分别利用优化蒸散计算(PM方案)、作物系数(CC方案)和二者同时优化(PMCC方案)改进WOFOST模型,基于降水适宜年(2012年)和干旱年(2015年和2018年)在辽宁省锦州开展的玉米分期(4月20日、4月30日和5月10日)播种试验资料评价模型改进效果.结果表明:2012年,PM方案可增大潜在蒸散,CC方案在作...  相似文献   

12.
南京地区稻田蒸散的研究   总被引:1,自引:1,他引:1  
引进半经验模式计算稻田蒸散,仅需要常规气象资料和作物的叶面积资料即可较精确地估算农田蒸散,解决了用Penman-Monteith方法计算误差偏高以及需要风速梯度观测等在实际应用中存在的困难。通过对模式进行参数的敏感性分析,证实了模式的可靠性和可行性。分析稻田蒸散发现水稻一生有两个耗水高峰:拔节期和抽穗开花期,此时的气象条件最有利于水稻蒸散的进行。  相似文献   

13.
Summary Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5 h, which is sufficient for use in plant disease management schemes. Authors’ addresses: Paulo C. Sentelhas, Agrometeorology Group, Department of Exact Sciences, ESALQ, University of S?o Paulo, P.O. Box 9, 13418-900, Piracicaba, SP, Brazil; Terry J. Gillespie, Agrometeorology Group, Department of Land Resource Science, Ontario Agricultural College, University of Guelph, NIG-2W1, Guelph, ON, Canada.  相似文献   

14.
参考作物蒸散模型对比分析及评价   总被引:1,自引:0,他引:1  
利用山东省6个气象台站45 a(1960-2004年)的逐日气象资料并选用7种参考作物蒸散模型,分别计算了上述各地的参考作物蒸散,对模型结果进行时空分布对比分析;进而以FAO推荐的Penman-Monteith模型为对照,利用最小一乘法对其余6种模型进行优化并对优化前后的模型进行时空比较.结果表明:Makkink模型在6个台站的时空分布模拟效果均最好,Mass-transfer模型在7-8月明显偏低,Net Radiation模型各站全年基本都偏高;根据不同月份的相对偏差情况,采用最小一乘法进行分月优化,优化后的模型预测月参考作物蒸散标准误差小于5 mm,平均相对误差小于8.5%,台站的年参考作物蒸散相对误差也基本小于10%,说明这些含参数较少的模型经优化后基本上可用,当资料缺损时不失为Penman-Monteith模型的替代模型.  相似文献   

15.
低温、干旱并发对玉米苗期生理过程的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
该文从低温与干旱并发的角度出发, 探讨其对玉米苗期生理过程、生长发育过程产生的影响。通过2004年人工模拟试验, 定量研究了低温、干旱及低温、干旱并发对玉米苗期生理过程、生长发育的影响。研究结果表明:低温对光合作用速率、蒸腾速率均为负效应, 在土壤相对湿度适宜时, 温度由20 ℃降到16 ℃, 光合作用速率下降22.4%, 蒸腾速率下降44.0%。干旱对光合作用速率、蒸腾速率也是负效应, 在温度适宜, 土壤相对湿度由80%降至50%时, 光合作用速率下降11.5%;土壤相对湿度由60%降至50%时, 蒸腾速率下降2.7%。低温、干旱并发的影响远大于低温、干旱单因子的影响, 温度由20 ℃降至16 ℃, 土壤相对湿度由80%降至50%时, 光合作用速率下降32.1%, 蒸腾速率下降52.7%。  相似文献   

16.
C3植物光合作用日变化的模拟   总被引:28,自引:1,他引:27  
对前人光合作用-气孔导度耦合模型进行了修正,建立了光合作用-蒸腾作用-气孔导度的耦合模型,它概括了叶片上各主要物理过程和生理过程之间的相互联系和制约关系。 用数值方法研究了不同环境因子(太阳辐射、温度、湿度和风速等)对光合作用、蒸腾作用和气孔导度的日变化及中午降低(midday depression)的影响。 主要结果是:(1)当边界层导度减小时,光合“午睡”加剧,蒸腾作用减弱,但作为反馈调节,气孔导度增加。 (2)气孔导度的最适温度最低,光合作用次之,蒸腾作用最适温度最高。当光合作用中午受到高温的胁迫时,气孔导度下降的幅度最大,光合作用次之,蒸腾作用的降幅最小。一天中,气孔导度降低的持续时间最长,蒸腾作用降低的持续时间最短。(3)空气绝对湿度越低,气孔导度越低,光合午睡越明显。蒸腾作用则决定于饱和水汽压差(Vpd)和气孔导度两个因素的相反的作用。蒸腾作用随Vpd增加而增大,但Vpd超过一定值后,反而使蒸腾作用下降。 (4)当温度在光合最适温度以上时,太阳辐射的增加使叶温增加,引起光合“午睡”的加剧和气孔导度的降低。(5)ci/cs在中午的降低表明气孔的关闭是光合作用“午睡”现象的原因。  相似文献   

17.
The possibility is examined that potential evapotranspiration values may be sensitive to changes in atmospheric carbon dioxide content. Enhanced levels of atmospheric CO2 increase water use efficiency of vegetation by improving growth rates and suppressing transpiration per unit leaf area. Highly cultivated crops without water or nutrient constraints are able to show the greatest growth improvements. In many natural or semi-natural ecosystems, under enhanced atmospheric CO2 concentrations, limits on the availability of soil nutrients severely constrains the possibility of improvements in growth and significant increases in leaf area index that could compensate for a decrease in transpiration per unit leaf area. Thus, in many natural or semi-natural ecosystems, which often form water gathering grounds in river basins, enhanced levels of CO2 will suppress transpiration and perhaps increase the proporation of precipitation that forms runoff or ground water. In low vegetation covers, such as grassland, the rates of transpiration and also evaporation from canopies that are wet after rainfall (interception loss) are very similar. In these canopies, evapotranspiration is unlikely to be significantly increased by small increases in leaf area index. It is suggested that the suppression of potential evapotranspiration by enhanced CO2 levels will be small, but that actual transpiration from tall, slow growing vegetation covers may be significantly suppressed. Thus for some vegetation covers the relationship between actual and potential evapotranspiration may be sensitive to CO2 levels. If this is so, it could be of importance to many water balance calculations. The suppression of evapotranspiration by enhanced CO2 levels will be most noticeable in dry climates where interception loss is insignificant and largely masked in very wet climates where a large proportion of evapotranspiration consists of interception loss.  相似文献   

18.
Summary  Transpiration of an adult corn crop was measured with the sap flow method using the stem heat balance technique. The 1 ha-field was located in the Parisian region and the measurements were taken over two consecutive years (1993 and 1994). The experiments were carried out during the active growing season, leaf area index being ≈4.0. In order to individuate the “mean plant” a preliminary analysis was carried out to determine the frequency distribution of plant stem diameters as measured on 34 randomly chosen samples. According to this analysis, the mean corn plant diameter was around 20 mm for both years. As a consequence, the sap flow gauges were installed on plants having this diameter. The sap flow transpiration data was compared with the actual evapotranspiration measured by the Bowen ratio method on the same experimental field at the hourly and daily scales. The comparison between sap flow transpiration and actual evapotranspiration showed that the values are more widely spread at the hourly scale than at the daily scale due to the kinetics of plant water content during the day. Sap flow transpiration was 88–90% of actual evapotranspiration: this lack of about 10–12% is of the same order as soil water evaporation. In conclusion, the sap flow transpiration method could be considered a valuable method to use for measuring transpiration of certain crop plants in the field, especially for small plots. This method is substantially improved if sap flow measurement is carried out on plants screened by the analysis of plant diameter distribution in the field. Received October 6, 1999 Revised June 21, 2000  相似文献   

19.
Three models of the partitioning of net radiation into latent and sensible heat fluxes over Sahelian savannah are described. Each model has a different configuration of stomatal and aerodynamic resistances. Their performance was assessed by comparison against field measurements of latent heat flux over savannah vegetation consisting of bushes interspersed with a herbaceous understorey. The modelled results indicate that in dry conditions, a Penman-Monteith based single source model performs adequately when predicting the latent heat flux. However, the models with two sources demonstrate that the bushes and herbs have very different responses to local climate. In all the models, evaporation is highly sensitive to stomatal resistance, suggesting that a better understanding of stomatal response would improve the accuracy of the models.  相似文献   

20.
中国干湿状况和干湿气候界限变化研究   总被引:13,自引:2,他引:11  
选取全国616个地面气象台站1975-2004年的地面资料,通过Penman-Monteith公式计算的参考蒸散确定湿润指数(W),按W为0.03、0.2、0.5和1.0把中国分为极干旱、干旱、半干旱、半湿润和湿润5个干湿区,给出了湿润指数的变化趋势和变异状况的地理分布,讨论了湿润指数的年代际变化特征。结果表明:湿润状况显著增加的地区主要为新疆西北部和中国的西南部,干旱化显著的地区主要在青海的东部、甘肃的南部和四川北部;干湿状况变化从中国的东部向西部逐渐增大,中国的西南地区干湿状况最为稳定;20世纪80年代初全国的平均干湿状况发生变化,由干旱趋向湿润,30a来半湿润、湿润地区干湿状况年际变化大,半干旱区和湿润区增多,半湿润区减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号