首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine pollution bulletin》2008,56(10-12):415-424
The sulphur cycle in the sediment of the Venice canal network was investigated by considering the sulphate reduction rate (SRR) and the distribution of sulphur compounds, in both pore water and sediment. Sulphate reduction (SR) is the main process in the metabolism of the organic matter supplied to the network by untreated urban effluents. Although it might account for the decomposition of only a limited percentage of the total organic-C inputs, the estimated rates are among the highest observed in coastal sediments. Measured rates range from 0.26 to 0.99 μmol cm−3 d−1, while mean annual values, estimated by a diagenetic model, vary from 0.16 to 0.43 μmol cm−3 d−1. The speciation of S in the sediment reveals that pyrite-S is the most abundant component of the total reduced S pool, whereas acid volatile sulphides and elemental sulphur together account for less than 45%. A preliminary budget indicates that the rate of burial of solid-phase S is small compared to the S produced by SR (from 10 to 25%). A large amount of reduced S is then lost from the canal deposits to be re-oxidised at the sediment-water interface or in the overlying water column.  相似文献   

2.
Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations. Pathways of C oxidation were inferred from the depth distributions of the potential oxidants (O2, NO3-, and oxides of Mn and Fe) and from directly determined rates of SO4(2-) reduction. The study area is characterized by intense seasonal upwelling, and during sampling in late summer the bottom water over the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially with depth. The process was entirely coupled to SO4(2-) reduction. At the two slope stations where bottom-water O2 was > 100 microM, C oxidation rates were 10-fold lower and varied less with depth; C oxidation coupled to the reduction of O2, NO3-, and Mn oxides combined to yield an estimated 15% of the total C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides, and as this pool decreased with depth, the importance of SO4(2-) reduction increased. The results point to a general importance of Fe reduction in C oxidation in continental margin sediments. At the shelf stations, Fe reduction was mainly coupled to oxidation of reduced S. These sediments were generally H2S-free despite high SO4(2-) reduction rates, and precipitation of Fe sulfides dominated H2S scavenging during the incubations. A large NO3- pool was associated with the Thioploca, and the shelf sediments were thus enriched in NO3- relative to the bottom water, with maximum concentrations of 3 micromol cm-3. The NO3- was consumed during our sediment incubations, but no effects on either C or S cycles could be discerned.  相似文献   

3.
Microbial activity, abundance and biomass, and biogeochemical cycling of iron, sulphur and carbon were studied in the extremely acidic (pH 2.5-4.3), meromictic, nutrient-rich pit lake Cueva de la Mora in Spain. The goal was to find out (1) if the relatively high nutrient content influenced plankton abundance in the water column and alkalinity-producing microbial processes in the sediments compared to other acid pit lakes, and (2) if sediments in the shallow, mixed and the deep, stagnant parts of the lake exhibited differences in microbial activities and geochemical sediment composition related to meromixis. We hypothesised that redox cycling was more intense in the mixed part and higher amounts of reduced components would accumulate in the stagnant part. Especially phytoplankton biomass, CO2 production, and sulphate reduction were indeed higher than reported from typical acid pit lakes and were rather within the range of neutral or weakly acidic lakes, which can be attributed to the relatively high nutrient contents of Cueva de la Mora. Even in the monimolimnion, anaerobic processes occurred mainly in the sediments. Sediments from the mixed and stagnant parts of the lake differed markedly in their biogeochemistry. Mixolimnetic sediments showed high iron and sulphate reduction rates, and they appeared to undergo substantial recycling, as supported by reactive Fe, relation between gross sulphate reduction rate and net accumulation of reduced sulphur, and viable counts of iron and sulphur bacteria. Monimolimnetic sediments exhibited lower anaerobic microbial activities, and surprisingly they accumulated more Fe(II) than mixolimnetic sediments, but less reduced sulphur and carbon. This might be explained by a strong separation of the two water bodies, resulting in comparably less input of energy (light) and allochthonous matter into the monimolimnion. Regarding the total extent of alkalinity-generating microbial processes, their net effect is not sufficient to neutralise the lake within decades.  相似文献   

4.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

5.
Climate change characterized by increasing temperature is able to affect precipitation regime and thus surface hydrology.However,the manner in which river sediment loads respond to climate change is not well understood,and related assessment regarding the effect of climate change on sediment loads is lacking.We present a quantitative estimate of changes in sediment loads(from 1.5 Gt yr-1 pre-1990 to 0.6 Gt yr-1 from 1991-2007) in response to climate change in eight large Chinese rivers.Over the past decades,precipitation change coupled with rising temperatures has played a significant role in influencing the sediment delivery dynamics,although human activities, such as reservoir construction,water diversion,sand mining and land cover change,are still the predominant forces. Lower precipitation coupled with rising temperatures has significantly reduced sediment loads delivered into the sea in semi-arid climates(4-61%).In contrast,increasingly warmer and wetter climates in subtropical zones has yielded more sediment(0.4-11%),although the increase was offset by human impact.Our results indicate that,compared with mechanical retention by reservoirs,water reduction caused by climate change or human withdrawals has contributed more sediment reduction for the rivers with abundant sediment supply but limited transport capacity(e.g.,the Huanghe).Furthermore,our results indicate that every 1%change in precipitation has resulted in a 1.3%change in water discharge and a 2%change in sediment loads.In addition,every 1%change in water discharge caused by precipitation has led to a 1.6%change in sediment loads,but the same percentage of water discharge change caused largely by humans would only result in a 0.9%change in sediment loads.These figures can be used as a guideline for evaluating the responses of sediment loads to climate change in similar climate zones because future global warming will cause dramatic changes in water and sediment in river basins worldwide at rates previously unseen.  相似文献   

6.
人为干扰和气候变化会改变湖泊水位状态,明确不同水位条件下湖泊沉积物有机碳矿化特征及其影响因素,对了解内陆水生态系统碳循环具有重要意义.为探究干旱区典型盐湖沉积物有机碳矿化速率对水位变化的响应,以巴里坤湖干涸湖底原状沉积物为研究对象,初步探究了0(T1)、-9(T2)、-23(T3)、-34(T4)和-45 cm(T5)水位处理对沉积物有机碳矿化速率的影响.结果表明,T1、T2和T3处理有机碳矿化速率在试验初期较高(0~10 d),10 d后缓慢下降,T4和T5处理有机碳矿化速率呈先增加后降低趋势;T1(1.718 μmol/(m2·s))与T3(1.784 μmol/(m2·s))处理有机碳矿化速率不存在显著差异,T1处理有机碳矿化速率是T2、T4和T5处理的1.09、3.31和3.57倍,不同处理有机碳累积矿化量表现为T3 > T1 > T2 > T4 > T5.有机碳累积矿化量(Ct)占沉积物有机碳(C0)的比例(Ct/C0)介于0.012~0.044之间,沉积物有机碳潜在排放量(Ci)占C0的比例(Ci/C0)介于0.018~0.045之间;水位降低,沉积物有机碳矿化常数(k值)减小,T1处理k值最大(0.137 d),T4处理最小(0.032 d).线性方程Cr=0.008x+0.488能较好地模拟有机碳矿化速率(Cr)与水位(x)的关系;不同水位处理有机碳矿化速率与模拟柱中沉积物5 cm温度呈显著的指数函数关系,T4、T5处理有机碳矿化温度敏感系数(Q10)显著高于T1、T2和T3处理,即水位降低增加了巴里坤湖干涸湖底沉积物Q10.因此,就巴里坤湖干涸湖底沉积物而言,水位从0 cm降至-45 cm时有机碳矿化速率降低,Q10增加;反之水位上升则会促进有机碳矿化分解,Q10降低.水位持续下降抑制有机碳矿化可能是维持干旱区盐湖沉积物碳库稳定的机制之一.  相似文献   

7.
Sediment trap experiments were carried out three times from 1999 to 2000, in the western part of the Seto Inland Sea (Suo-Sound), Japan. We investigated both the particulate flux and the composition of chemical substances in the sediment trap samples. Based on the results, we discuss the origin of particulate organic carbon (POC) collected by the sediment traps in a coastal area. Moreover, we purposed to estimate the flux of the portion of the POC that is derived from phytoplankton photosynthesis. The fluxes of POC varied between 677 and 3424 mgC m(-2) d(-1). Significant positive correlations between POC and aluminum (Al) fluxes suggested that these components show almost the same behaviour. The mean value of the Al flux was about eight times higher than that of Al burial rates on the sediment surface. Therefore, it seems that the POC flux observed with the sediment traps was considerably overestimated. Moreover, judging from the fact that Al is a typical terriginous element, it seems that most of the POC collected in the sediment traps derived from the re-suspended surface sediment or sediment transported laterally from shallow flanks such as intertidal mudflats. The fluxes of chlorophyll a (Chl a) were independent of the POC fluxes, and a relatively consistent correlation was found between Chl a abundance in the water column and the Chl a flux. Moreover, surface sediment Chl a content was approximately 100 times lower than that of suspended matter. Therefore, resuspension and terriginous contributions to Chl a collected in sediment traps are likely to be negligible. The POC content in the trap samples varied between 22.4 and 70.7 mg g(-1) dry weight. The variations of POC contents were positively correlated with the Chl a contents: POC(mg g(-1))=76.5 x Chl a(mg g(-1)) + 26.0 (r=0.95, p<0.01, n=9). This result shows that POC contents strongly corresponded with phytoplankton and their debris. It was also considered that the fraction of POC derived from phytoplankton primary production could be estimated as Chl a content times a certain factor. In this study, we estimated the flux of the portion of the POC originating from phytoplankton production by multiplying the Chl a fluxes by 76.5 (the mean POC:Chl a ratio in the trap samples). These values varied between 308 and 758 mgC m(-2) d(-1), and accounted for 35.1+/-21.2% of total POC flux. Although the amount of POC that originates from phytoplankton photosynthesis was a small portion of total POC flux, it seems to be a large portion of potential primary production in the water column.  相似文献   

8.
This study was conducted to classify water erosion risk for a deciduous forest and to predict the amount of sediment yield from forest road network. GIS in combination with AHP was used for determining the soil erosion risk degrees of forest. Beside, sediment yield from forest roads with gravel and asphalted surfacing was estimated using SEDMODL. Rainfall simulator was used in calibration and validation process of model. Results showed that 47.9% of forest soil is classified from moderate to very high vulnerability. 32.3% of roads were located in soil erosion risk class of very high. This class is generally found in the eastern region of forest, while areas with very low risk are found in the south western part. 14.6% of the forest roads were ranked as having very low sediment yield. Only 61 segments out of 339 segments of forest road network delivered sediment to the ravine network. The estimated annual sediment yield for all of road sections by SEDMODL and rainfall simulator were 10,935.45 and 10,509.29 g m-2, respectively. Results of the calibration and validation process showed that the variation accounted for in the predicted values by SEDMODL with the observed values under rainfall simulation was 3.90%. Best management practices (BMP) must be considered for the areas with high degrees of erosion risk.  相似文献   

9.
Sedimentation and sediment metabolism was measured at eight active milkfish fish pens and at one abandoned site in the Bolinao area, Philippines in order to examine the interactions between sediment and water in this shallow coastal zone. The rates of sedimentation were high in the area due to siltation, but the activities in the fish pens also contributed to enhanced sedimentation as indicated by the difference between the abandoned and active sites. The sediment metabolism appeared to decrease with increasing rates of sedimentation indicating that the microbial activity reached a saturation level in the fish pen sediments. Anaerobic processes dominated the organic matter decomposition, and sulfate reduction rates are among the highest measured in fish farm sediments. The rates decreased with increasing organic loading despite high concentrations of sulfate (>10 mM) at all sites. Presence of methane bubbles in the sediments suggests that sulfate reduction and methanogenesis were coexisting. The sediment metabolism was significantly reduced at the abandoned site indicating that the stimulation of microbial activities is due to active fish production. The anaerobic activity remained high at the abandoned site indicating that the sediment biogeochemical conditions remain affected long time after fish production has ceased.  相似文献   

10.
运河(杭州段)沉积物磷释放的模拟试验   总被引:19,自引:1,他引:18  
采用室内模拟的方法研究了扰动情况下运河(杭州段)表层沉积物磷的释放对上覆水的影响以及投加石灰、投加三气氛发化铁、连续曝气、换水清洗等措施对沉积物磷释放的控制效果,研究表明,在扰动、开放体系条件下,运河(杭州段)沉积物磷释放导致的上覆水总磷浓度在释放初期最高,随时间逐渐下降,表现出净吸附,采集于有机污染较重河段的沉积物磷释放能力显著高于总磷含量较高但以重金属污染为主的河段的沉积物,上覆水投加石灰最终导致沉积物磷释放量的增加,投加三氯化铁显著降低了上覆水总磷浓度,上覆水连续曝气降低了上覆水的平衡磷浓度、换水清洗对上覆水磷浓度的降低效果是有限的,然而上述措施均未能将上覆水总磷浓度控制在V类水的浓度限定值以下,因此,就上覆水TP的浓度指标而言,运河(杭州段)沉积物的内源释放对其影响很大。  相似文献   

11.
To examine nitrate persistence, detailed geochemical profiling, using core-squeezed water and piezometer samples, was carried out at five sites in southern Ontario where groundwater is moving downward in silt-rich aquitard sediments at rates of 16 to more than 20 cm year−1. Elevated levels of NO3-N (5–50 mg 1−1) that occur in the shallow groundwater as a result of agricultural activity, were found to be consistently attenuated, generally to very low levels (< 0.05 mg 1−1-N), at the ‘redoxcline’, the horizon marking the boundary between the surficial weathered (brown) sediments and the underlying unweathered (grey) sediments. Tritium dating suggests that groundwater at the redoxcline depths (3–5 m) was recharged between 1970 and 1980, thus the N03 depletion appears to result from biodegradation reactions since no major landuse changes have occurred during this period. The close association of the nitrate depletion zones with the redoxcline, where, in particular, sediment sulphur contents increase abruptly, and where also porewater SO42− levels increase, suggests that the dominant attenuation reaction is autotrophic denitrification using reduced sulphur compounds present in the unweathered sediment as the electron donor. Mass balance calculations suggest that the increase in the downward rate of migration of the redoxcline, owing to added sulphur consumption from NO3 contamination, is only about 1 mm year−1 at these sites. Review of the literature indicates that most silt- and clay-rich sediments have S contents in the same range, or higher, than those investigated here, thus, in most cases where aquifers are overlain by several metres or more of unweathered confining sediments, it is likely that a high degree of protection is afforded from surficial NO3 contamination.  相似文献   

12.
The objective of this case study was to calibrate and verify detailed transport model of sediment in a 4‐kilometre stretch of the middle Elbe floodplains in Germany. The hydraulic RMA‐2 model and the SED2d‐WES sediment transport model were used. These models were calibrated and validated by detailed measurement of the surface water elevations, the velocities at six profiles, and the suspended sediment concentration and deposition (by means of 10 sediment traps). The flow was modelled for three steady‐state discharges. The surface water elevations were calculated to an accuracy of less than 5 cm compared to measurements. The differences between the calculated and measured velocities were with one exception smaller than 0.2 m/s (measured range 0.1…?1.0 m/s). An average sediment input of 35 g/(m2 d) was calculated for the flood event studied. The highest calculated sedimentation rates of 700 g/(m2 d) (dry density 90 kg/m3) occurred in quiescent zones and abandoned channels. Twenty‐five percent of the deposited sediment settled in the quiescent zones (which only account for 13% of the area). The most sensitive parameters of the sediment transport model were the settling velocity and critical shear stress. The modelling techniques used allowed sediment deposition on the floodplains of the Elbe to be realistically depicted.  相似文献   

13.
The polycyclic aromatic hydrocarbons (PAHs) pollution in the Sarno River and its environmental impact on the Gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) were estimated. The 16 PAHs identified by the USEPA as priority pollutants and perylene were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments. Total PAHs concentrations ranged from 23.1 to 2670.4 ng L(-1) in water (sum of DP and SPM) and from 5.3 to 678.6 ng g(-1) in sediment samples. Source analysis revealed that PAHs mainly came from combustion process. Contaminant discharges of PAHs into the sea were calculated in about 8530 gd(-1) showing that this river should account as one of the main contribution sources of PAHs to the Tyrrhenian Sea.  相似文献   

14.
Degradation of coastal ecosystems in the Great Barrier Reef (GBR), Australia, has been linked with a decline in water quality from land-based runoff. This paper examines the reduction in current end-of-catchment loads required for total suspended solids (TSS) and dissolved inorganic nitrogen (DIN) to achieve GBR water quality guidelines. Based on first-order estimates of sustainable pollutant loads, current TSS and DIN loads would need to be reduced by approximately 7000ktons/y (41%) and 6000tons/y (38%), respectively. Next, these estimated reductions for TSS and DIN are compared with Reef Plan targets for anthropogenic sediment (-20% by 2020) and nitrogen (-50% by 2013) loads. If successful, these targets will accomplish approximately 40% of TSS and 92% of DIN load reductions required to achieve sustainable loads to the GBR lagoon. These first-order estimates elucidate the need to establish ecologically relevant targets for river pollutant loads to the GBR for management and policy.  相似文献   

15.
The sediment load on the Chinese Loess Plateau has decreased sharply in recent years. Therefore, it is critical to determine the effects of anthropogenic and climatic factors on the reduction in sediment load. The Huangfuchuan River is the primary tributary in the sediment-rich region of the Loess Plateau in China. This study identified a significant reduction in the sediment load in the Huangfuchuan River basin. The accumulative anomaly method was used to determine the change in annual sediment load from 1960 to 2010. The mean annual sediment load in the Huangfuchuan River was 0.564 × 108 t from 1960 to 1979 (Period I), and it decreased to 0.379 × 108 t between 1980 and 1996 (Period II) and to 0.100 × 108 t between 1997 and 2010 (Period III). Instead of conventional ways, a method that coupled a dynamic water balance model and a back-propagation artificial neural network was employed to separate the contributions of climate variability and human activities on the reduction in sediment load. The results showed that compared to the sediment load in Period I, human activities were responsible for 64.32 and 71.55% of the reductions in sediment load in Periods II and III, respectively, while climatic effects accounted for 35.68 and 28.45% of the reductions in Periods II and III, respectively. The construction of check dams was the main human activity that resulted in the sediment reduction between Periods I and II and accounted for 35.51% of the decrease. Vegetation restoration due to the implementation of the “Grain-to-Green” program was the dominant cause of the reduction in sediment between Periods II and III and caused more than 40.00% of the decrease. The increase of water consumption by humans also contributed the reduction in sediment between Periods II and III in the Huangfuchuan River basin.  相似文献   

16.
The coastal zone of the Great Barrier Reef shelf, with an area of 30,000 km(2) and a water volume of 300 km(3), receives an average annual input of sediment on the order of 14-28 Mty(-1)--an estimated two- to fourfold increase since European settlement. There is considerable concern about the impact and ultimate fate of terrestrially-derived nutrients entering the Great Barrier Reef World Heritage Area (GBRWHA). Analysis of current data suggests that microbial communities in coastal waters and in unconsolidated sediments metabolise nutrients equivalent to the entire dissolved and particulate nutrient load debouched from land. River-derived nutrients account for 40-80% of the carbon, 13-30% of the nitrogen, and 2-5% of the phosphorus necessary to support the observed rates of benthic and pelagic mineralisation in Princess Charlotte Bay in the far north, and in Rockingham Bay and Missionary Bay in the central section, of the GBRWHA. Nearly all nitrogen is ultimately returned to the atmosphere via denitrification. There is little net burial of nutrients in subtidal sediments. These budget estimates are based on a sparse data set, but it is clear that marine sources of nutrients (N-fixation by pelagic and benthic cyanobacteria) must be important, but the magnitude of these sources is poorly known and likely to be highly variable in space and time. Data from sediment trap deployments suggest that, despite significant re-suspension, sedimentation fluxes are sufficient to balance benthic mineralisation rates. Most organic material deposited to the benthos appears to be flocculent or colloidal aggregates, perhaps formed via microbial mediation and exudation of extra-cellular material. The geophysical dynamics of the coastal boundary layer plays an important role in concentrating biological and biogeochemical activity within a shallow, narrow coastal zone. Mangroves and tidal flats are small in area, but trap, transform, and store a disproportionate amount of sediment and organic matter within the GBRWHA. The highly efficient use of terrestrially-derived nutrients by benthic and pelagic microbes in the coastal zone helps to explain why coral reefs on the middle and outer shelf have remained relatively unscathed despite a significant increase in sediment delivery.  相似文献   

17.
In this article we apply the CASCADE network-scale sediment connectivity model to the Vjosa River in Albania. The Vjosa is one of the last unimpaired braided rivers in Europe and, at the same time, a data scarce environment, which limits our ability to model how this pristine river might respond to future human disturbance. To initialize the model, we use remotely sensed data and modeled hydrology from a regional model. We perform a reach-by-reach optimization of surface grain size distribution (GSD) and bedload transport capacity to ensure equilibrium conditions throughout the network. In order to account for the various sources of uncertainty in the calculation of transport capacity, we performed a global sensitivity analysis. The modeled GSD distributions generated by the sensitivity analysis generally match the six GSDs measured at different locations within the network. The modeled bedload sediment fluxes increase systematically downstream, and annual fluxes at the outlet of the Vjosa are well within an order of magnitude of fluxes derived from previous estimates of the annual suspended sediment load. We then use the modeled sediment fluxes as input to a set of theoretically derived functions that successfully discriminate between multi-thread and single-thread channel patterns. This finding provides additional validation of the model results by showing a clear connection between modeled sediment concentrations and observed river morphology. Finally, we observe that a reduction in sediment flux of about 50% (e.g., due to dams) would likely cause existing braided reaches to shift toward single thread morphology. The proposed method is widely applicable and opens a new avenue for application of network-scale sediment models that aid in the exploration of river stability to changes in water and sediment fluxes.  相似文献   

18.
Colony-forming eutrophic marine microorganisms in ballast water were counted in samples taken on board in 2002 and 2003. In the ballast water in Japan, viable cell numbers were highly variable but not by more than 10(5.1) colony-forming units (CFU)ml(-1) regardless of season. Even when ballast water was discharged offshore, values varied but not by more than 10(5.0) CFUml(-1). The effectiveness of the ballast water exchange was unconfirmed, except for the February 2003 voyage. No microbial colonies were counted in the reloaded ballast water in the high seas on that voyage, which contributed to the reduction of the total number of viable cells sampled in the discharged ballast water at the Ras Laffan port in Qatar. In sediment samples, the values of 10(5.2) - 10(6.0) CFUml(-1) were estimated for all seasons in which voyages took place. The maximum of the marine Vibrio species, 110 CFUml(-1), was observed in the ballast water sample taken in July 2003. The estimated total viable cell numbers in sediments were higher than those counted in the ballast water throughout the experiments, indicating the importance of sediment management as well as ballast water management on vessels traveling from Japan.  相似文献   

19.
Within the hydrologic balance of the River Arno catchment (northern Tuscany), the Rivers Elsa and Era are important tributaries entering the main river from the left bank in the lower part of the watershed. Waters and bed sediments were sampled in June 2000 during low discharges in the Rivers Elsa and Era, as well as in major tributary streams. Water samples were analysed for major chemistry and sulphur isotope composition of sulphate, and sediment samples were analysed for major composition and selected trace elements of environmental concern (Zn, Cu, Pb, Cr and Ni). The main results for the waters are: (1) Na and Cl in solution show consistent downstream positive trends in the main rivers, thus supporting progressive contributions of anthropogenic salts; the highest concentration values are observed in tributaries; (2) as shown by sulphur isotopes, sulphate in solution is mainly controlled by dissolution of evaporites (Elsa basin) or oxidation of reduced organic/biogenic sulphur (Era basin), with anthropogenic contributions in most streams not higher than 10% in both the basins. A δ34S signature in the range ?2 to +3‰ is estimated for pollutant sulphate in the basins studied. The main results for the sediments are: (1) major chemistry is essentially controlled by the lithotypes drained by the waters; (2) pollution by heavy metals does not reach high levels; (3) compared with local fine‐grained rocks, copper is more frequently anomalous, whereas lead and zinc show only occasional anomalies; (4) local high concentrations of chromium and nickel can be attributed to upstream occurrences of ophiolites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号