首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An attempt is made to study the properties of the Mohorovi?i? discontinuity and the asthenosphere beneath the Pamir-Himalaya from the geomagnetic results obtained at Sabhawala (Dehra Dun), Yangi-Bazar (Tashkent) and Alma-Ata observatories, situated on its southern and northern flanks, in a narrow longitude zone.Medium-sized induction arrows (Wiese vectors) for night-time “bay” events at all the three stations are found to point northward. The northward orientation at Sabhawala indicates a subsurface concentration of induced currents in a step structure at the Moho to the south of Sabhawala and higher electrical conductivity in the Aravalli-Cambay region, where high heat flow and gravity values have also been reported, supporting an elevated asthenosphere, as against the one beneath the western Himalaya. The arrows at Yangi-Bazar and Alma-Ata also show an east-west current channelling in another step structure at the Moho to the south of these stations and north of the Pamir and the Tien Shan mountains.The Sq variations of the H, D and Z components at the three stations, lying close to the northern Sq ionospherics current focus, reveal the characteristic features, without reflecting any unusual asthenospheric conditions in the region.It is concluded that the orogenesis of the Pamir-Himalaya mountain system in terms of plate tectonics or block uplift is different from that of the Cordilleran and Andean mountains in North and South America respectively, where subsurface conductive structures have been delineated from geomagnetic observations by earlier workers.  相似文献   

2.
The geomagnetic skin-effect is specified by setting three length scales in relation to each other: L1 for the overhead source. L2 for the lateral non-uniformity of the subsurface conductor, L3 for the depth of penetration of a quasi-uniform transient field into this conductor. Relations for the skin-effect of a quasi-uniform source in layered conductors are generalized to include sources of any given geometry by introducing response kernels as functions of frequency and distance. They show that only those non-uniformities of the source which occur within a distance comparable to L3 from the point of observation are significant. The skin-effect of a quasi-uniform source in a laterally non-uniform earth is expressed by linear transfer functions for the surface impedance and the surface ratio of vertical/horizontal magnetic variations. In the case of elongated structures and E-polarisation of the source, a modified apparent resistivity is defined which as a function of depth and distance gives a first orientation about the internal distribution of conductivity. The skin-effect of a non-uniform source in a non-uniform earth is considered for stationary and “running” sources. Recent observations on the sea floor and on islands indicate a deep-seated change of conductivity at the continent—ocean transition, bringing high conductivity close to the surface, a feature which may not prevail, however, over the full width of the ocean. There is increasingly reliable evidence for high conductivities (0.02 to 0.1 micro ?1 m?1) at subcrustal or even at crustal depth beneath certain parts of the continents, in some cases without obvious correlation to geological structure.  相似文献   

3.
?—?In the last ten years (1990–1999), 21 discrete variations of continuous tilt signal have been recorded on Mount Etna, among which one episode was caused by the opening of the eruptive fracture. The remaining 20 anomalies can be classified into two categories: the first comprises 5 “instantaneous” tilt variations recorded in correspondence to the most energetic seismic events (M L ?≥?3.3) localized on the high western part of the volcano; the second consists of 15 transient anomalies ranging from some hours to 1–2 days, observed at different times at the various tilt stations, with no correlation to seismic events or other evident volcanic episodes. The aseismic variations propagate through the volcanic edifice with a velocity between 4.5–6.0?km/day. Modeling studies suggest that the deformation is generated by a tensile source located 3–6?km SW from Etna volcano summit and 5–10?km depth.  相似文献   

4.
We propose that magnetic anomalies south of Australia and along the conjugate margin of Antarctica that were originally identified as anomalies 19 to 22 may be anomalies 20 to 34. The original anomaly identification has two troublesome aspects: (1) it does not account for an “extra” anomaly between anomalies 20 and 21, and (2) it provides no explanation for the rough topography comprising the Diamantina Zone. With our revised identification there is no “extra” anomaly and the Diamantina Zone is attributed to a period of very slow spreading (~4.5mm/yr half rate) between 90 and 43 m.y. The ages bounding the interval of slow spreading (90 and 43 m.y.) correspond to times of global plate reorganizations. Our revised identification opens up the possibility that part of the magnetic quiet zone south of Australia formed during the Cretaceous long normal polarity interval. Breakup of Australia and Antarctica probably occurred sometime between 110 and 90 m.y. B.P. The “breakup unconformity” identified by Falvey in the Otway Basin may correspond to a eustastic sea level change.  相似文献   

5.
中亚造山带东段经历了古亚洲洋、蒙古—鄂霍茨克洋和古太平洋构造体制的多重作用,多期次的构造活动不仅改造了地形地貌、岩石圈结构,同时也改造了软流圈分布,因此对软流圈结构研究具有重要的科学意义.为了揭示复杂多重构造体系下软流圈的分布特征,完成了中亚造山带东段约1800km长大地电磁测深剖面,并对数据进行非线性共轭梯度反演,获得二维电性结构模型.研究发现:中亚造山带东段岩石圈内部存在多处低阻异常,地表多对应第四纪火山群或古缝合带,表明这些低阻异常与软流圈上侵有关.软流圈呈现高导特征,南部略薄,电阻率值为10~30Ωm,北部厚度较大,电阻率值为10~0.1Ωm,这种电性结构特征体现了中亚造山带东段软流圈南北两侧厚度、部分熔融程度的不均一性.而已有的层析成像结果显示中亚造山带软流圈东西向则呈现东厚西薄的特征.结合区域地质,提出软流圈与岩石圈一样在碰撞造山过程中厚度、部分熔融程度也会随之变化的动力学认识.中亚造山带东段软流圈主要经历了古亚洲洋构造体系、蒙古—鄂霍茨克构造体系和太平洋构造体系三阶段的构造事件影响,因此中亚造山带东段软流圈的南北向差异,推断为古亚洲洋闭合早于鄂霍茨克洋闭合的时限差异所致,东西向差异则主要受太平洋构造体系的影响.  相似文献   

6.
The activation coefficient equations in the"activation criterion of pre-existing weakness"are relatively complex and not easy to apply to specific applications.The relative activity of pre-existing weaknesses is often critical in geological analysis.The Mohr circle can be used only in two-dimensional stress analysis.By applying the"activation criterion of pre-existing weakness"and combining it with numerical analysis,we establish the correspondence between the pole(n,n)of a pre-existing weakness plane and its orientation in"Mohr space".As a result,the normal stress(n)and shear stress(n)of a pre-existing weakness plane can be readily expressed in Mohr space.Furthermore,we introduce the method and procedures for predicting the activation and relative activation of pre-existing weaknesses in Mohr space.Finally,we apply the Mohr space method and compare the predictions to sandbox modeling results and 3D seismic data.The results show that Mohr space can be used in stress analysis to estimate the activation of a pre-existing weakness in any triaxial stress state.  相似文献   

7.
The lithosphere is interpreted as a thermal boundary layer. Approximate solutions of the boundary layer cooling problem are developed which include mantle radioactivity, partial melt in the asthenosphere, a temperature gradient in the asthenosphere, and a non-zero lithospheric thickness at the ridge crests. The cooling history of oceanic lithosphere is found to be remarkably insensitive to assumptions about the amount of radioactivity in the upper mantle and the extent of melting in the asthenosphere. Determinations of the thickness of oceanic lithosphere and the depths of oceans as a function of age are in excellent agreement with boundary layer predictions which include a heat flux from the asthenosphere. However, the determinations do not resolve how much of the total asthenospheric heat flux might be caused by a temperature gradient in the asthenosphere. Simple thermal arguments indicate that the initial lithospheric thickness, L0, at ridge crests should depend on the local half-spreading rate, V, as L0 = 3 km/V(cm/year).  相似文献   

8.
Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.  相似文献   

9.
Variations recorded simultaneously at eight Indian stations during a magnetic storm are analysed to obtain the power spectra for each component using the fast Fourier transform. For two selected peaks, observed for H at all stations, at 49.5- and 70-min periods, a complex demodulation is performed for each component. From the variations thus obtained, horizontal polarization ellipses are drawn for four events of 49.5-min period. The variation of the demodulates and polarization ellipses at the stations shows a regional character which coincides with the physiographic grouping of the stations. Anomalously large Z variations are observed at the equatorial stations, which are near the sea. A distinct feature is the suppression of H at Trivandrum where the polarization ellipses confirm the E-W trend of the induced currents in this region. The overall similarity of the horizontal variations is demonstrated by these ellipses. Horizontal disturbance vectors at Annamalainagar, Trivandrum and Sabhawala confirm channelled currents located previously. At Shillong, the induced effects are evident and the currents are deduced to flow eastward, directly beneath the station.The overall regional similarities in variations are clearly manifested.  相似文献   

10.
The VLF response of laterally inhomogeneous and anisotropic models is calculated numerically using the finite element method. Some results are presented for a slab model in terms both of the polarization parameters, i.e., the tilt angle and ellipticity of the magnetic polarization ellipse, and the amplitude ratio |Hz/Hx|. On the basis of both the ellipticity and the tilt angle, it is possible to discriminate between a poor conductor and a good one. The direction of the dip can be determined from the anomaly profiles of all diagnostic parameters. The effect of the conductive overburden is most noticeable on the ellipticity profile: one observes attenuation for a poor conductor and “negative attenuation” for a good conductor. The anomaly profiles for anisotropic cases are consistent with the ones of the isotropic cases.  相似文献   

11.
The 3-h Kp index is widely used as a measure of geomagnetic activity for ionospheric studies. Specifically, it is the planetary index used to determine the geomagnetic dependence of statistical auroral patterns and the convection electric field for certain models. Its quasi anti-logarithm, the Ap index, is similarly used in statistical models of the neutral atmosphere and neutral wind. Physics-based ionospheric models, such as the Utah State University (USU) Time-Dependent Ionospheric Model (TDIM), use these statistical models as magnetospheric and thermospheric inputs. However, the 3-h time interval between index computations is now considered a shortfall with regard to specifying and forecasting phenomena known to have faster time constants, e.g., auroral electrojet variations during a substorm. Therefore, these indices have been targeted for high-time resolution development; we have developed such indices in Della-Rose et al. (1999). We now use our 15-minute station “K-like” index to determine the effect of introducing high-time resolution magnetic fluctuations into the TDIM inputs. This study represented the high-latitude ionosphere by a grid of 1484 locations, and was carried out for a geomagnetic storm period during solar maximum and “simulated” winter solstice conditions. We found that, for fixed Interplanetary Magnetic Field (IMF) By/Bz ratio, driving the TDIM with our 15-minute “K-like” index altered the average high-latitude NmF2 value by as much as 8% (vs. the average NmF2 obtained using a 3-h index to drive the TDIM). More significantly, the standard deviation of the NmF2 variations was up to 35%. Under some conditions, the average NmF2 was changed by up to 30% with a standard deviation of over 60%. However, the effect of selecting different convection patterns that represented three southward IMF Bz orientations led to larger effects. The high-latitude average NmF2 changed by 10% or less, but the spread in the distribution always ranged from standard deviations of 29 to 68%. These results indicate that there is a substantial need to consider both short-term magnetic fluctuations and inclusion of real-time IMF data in the inputs to ionospheric models.  相似文献   

12.
An overview of the S-wave velocity (V s) structural model of the Caribbean with a resolution of 2°?×?2° is presented. New tomographic maps of Rayleigh wave group velocity dispersion at periods ranging from 10 to 40?s were obtained as a result of the frequency time analysis of seismic signals of more than 400 ray-paths in the region. For each cell of 2°?×?2°, group velocity dispersion curves were determined and extended to 150?s by adding data from a larger scale tomographic study (Vdovin et al., Geophys. J. Int 136:324–340, 1999). Using, as independent a priori information, the available geological and geophysical data of the region, each dispersion curve has been inverted by the “hedgehog” non-linear procedure (Valyus, Determining seismic profiles from a set of observations (in Russian), Vychislitielnaya Seismologiya 4, 3–14. English translation: Computational Seismology (V.I. Keylis-Borok, ed.) 4:114–118, 1968), in order to compute a set of V s versus depth models up to 300?km of depth. Because of the non-uniqueness of the solutions for each cell, a local smoothness optimization has been applied to the whole region in order to choose a three-dimensional model of V s, satisfying this way the Occam's razor concept. Several known and some new main features of the Caribbean lithosphere and asthenosphere are shown on these models such as: the west directed subduction zone of the eastern Caribbean region with a clear mantle wedge between the Caribbean lithosphere and the subducted slab; the complex and asymmetric behavior of the crustal and lithospheric thickness in the Cayman ridge; the predominant oceanic crust in the region; the presence of continental type crust in Central America, and the South and North America plates; as well as the fact that the bottom of the upper asthenosphere gets shallower going from west to east.  相似文献   

13.
A method of estimating the lateral velocity variations in the 2D case using the data on deviations of wave paths from straight lines (or great circle paths in the spherical case) is proposed. The method is designed for interpretation of azimuthal anomalies of surface waves which contain information on lateral variations of phase velocities supplementary to that obtained from travel-time data in traditional surface wave tomography. In the particular 2D case, when the starting velocity is constant (c 0) and velocity perturbations δc(x,y) are sufficiently smooth, a relationship between azimuthal anomaly δα and velocity perturbations δc(x,y) can be obtained by approximate integration of the ray tracing system, which leads to the following functional: $$\delta \alpha = \int_0^L {\frac{{s(\nabla m,n_0 )}}{L}} ds,$$ wherem(x,y)c(x,y)/c 0,L is the length of the ray,n 0 is a unit vector perpendicular to the ray in the starting model, integration being performed from the source to the receiver. This formula is valid for both plane and spherical cases. Numerical testing proves that for a velocity perturbation which does not exceed 10%, this approximation is fairly good. Lateral variations of surface wave velocities satisfy these assumptions. Therefore this functional may be used in surface wave tomography. For the determination ofm(x,y) from a set ofδα k corresponding to different wave paths, the solution is represented as a series in basis functions, which are constructed using the criterion of smoothness of the solution proposed byTarantola andNersessian (1984) for time-delay tomography problems. Numerical testing demonstrates the efficiency of the tomography method. The method is applied to the reconstruction of lateral variations of Rayleigh wave phase velocities in the Carpathian-Balkan region. The variations of phase velocities obtained from data on azimuthal anomalies are found to be correlated with group-velocity variations obtained from travel-time data.  相似文献   

14.
We have monitored seismic activity induced by impoundment of Lake Jocassee in northwest South Carolina for about two years. Low-level shallow activity was recorded. The larger felt events (2.0 ? ML ? 2.6) were found to be associated with precursory changes in one or more of the following; number of events, tS/tp ratio values and radon concentrations in groundwater.The microearthquakes in the precursory period were accurately located in time and space, and their location pattern was used to develop an empirical earthquake prediction model.The precursory period consists of two phases; α-phase or a period of slow (or no) increase in seismicity, and β-phase, a period when the activity increase is more rapid. The main shock was found to be located within a cluster, a “target” area defined by the location of events in the β-phase. There is a general absence of seismic activity in the “target” area in the α-phase. The main shock occurred soon after a period of quiescence in the seismic activity in the β-phase. The magnitude of the shock, ML is given by: ML = 2 log D ? 0.07, where D is the duration of the precursory period in days.The model was successfully tested with data for a magnitude 2.3 event on February 23, 1977 which was also accompanied by radon and ts/tp anomalies.  相似文献   

15.
I present the results of statistical hypothesis testing of Grand’s (2002) global tomography model of three-dimensional shear velocity variations for the middle mantle underneath eastern and southern Africa. I apply an F test to evaluate the validity of a model where a tilted, slow-velocity anomaly in the deepest mantle under southern Africa, known as the African superplume, is continuous with a slow-velocity anomaly in the upper mantle under eastern Africa. This null hypothesis is tested against alternative hypotheses, in which various “obstruction volumes” in the middle mantle are constrained to zero perturbation from the one-dimensional reference velocity during the tomographic inversion. I find that there is an equal probability of accepting an alternative hypothesis with a thin “obstruction volume” at 850–1,000 km depth, whereas volumes at other depths are rejected. But the alternative hypothesis, where a connection is forced at 850–1,000 km depth, is rejected. I conclude that the African superplume rises to at least 1,150 km depth, and that the upper mantle slow-velocity anomaly continues from the surface to below the mantle transition zone. I interpret the “obstruction volume” as a weakening of the superplume in the middle mantle.  相似文献   

16.
Laboratory analogue model magnetic measurements are carried out for a model of the region including Tasmania, Bass Strait with its highly conductive deep sedimentary basins, and the south coast of mainland Australia. The model source frequencies used simulate naturally occurring geomagnetic variations of periods 5–120 min. In-phase and quadrature magnetic Hx, Hy and Hz field measurements for the modelled region are presented for an approximately uniform overhead horizontal source field for E-polarization (electric field of the source in the N-S direction) and for H-polarization (electric field of the source in the E-W direction). Large anomalous in-phase and quadrature model magnetic fields are observed over Bass Strait and the coastal regions at short periods for both E- and H-polarization, but with increasing period, the field anomalies decrease more rapidly for E-polarization, than for H-polarization. The difference in response with polarization for the Bass Strait region is attributed to current induced in the deep ocean, for all periods, being channelled through Bass Strait for H-polarization but not for E-polarization. The persistent large coastal field anomalies elsewhere, for H-polarization, can be accounted for by the coastal current concentrations due to currents induced in the deep ocean for all periods deflected to the south and to the north by the shelving sea-floor and channelled through Bass Strait and around the southern coast of Tasmania. The phenomena of current deflection and channelling for H-polarization for the geometry of the southern Australia coastline and associated ocean bathymetry is particularly effective in producing field anomalies for a large period range.The coastal horizontal Hx and Hy field anomalies, present for E-polarization at short periods and for H-polarization at all periods, do not extend far inland, and thus, for inland station sites somewhat removed from the coast, should not present serious problems for magnetic soundings in field work. The sharp vertical field (Hz) gradient over Tasmania at short periods, which is predominantly in the E-W direction for E-polarization and the N-S direction for H-polarization, is strongly frequency dependent, becoming almost undetectable at 60 min. The behaviour of the Hz field gradients, however, are very similar from traverse to traverse over inland Tasmania, and thus, the effects of the ocean should not present too serious a problem in the interpretation of field station studies. The discrepancies between model and field station results should be useful in mapping geological boundaries in the region.  相似文献   

17.
This paper presents a set of seismicity parameters that are estimated at the Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences based on the regional catalog data with the purpose of routine monitoring of the current seismic situation in the region. The focus is on the identification of changes in the seismic regime (seismic quiescences and seismicity increases) in earth volumes adjacent to the maturing rupture zone of a large earthquake. The techniques we use include estimation of the seismicity level for the region using the SOUS’09 scale; calculation of the variations in the slope of the recurrence relation, identification of statistically significant anomalies in the slope using the Z test, and calculation of the seismic activity A 10; monitoring the RTL parameter and variations in the area of seismogenic ruptures; using the Z test to detect areas of statistically significant decreases in the rate of seismicity; and identification of earthquake clusters. We furnish examples of such anomalies in these seismicity parameters prior to large earthquakes in Kamchatka.  相似文献   

18.
Equations describing trace element and isotopic evolution in a magma chamber affected simultaneously by fractional crystallization and wallrock assimilation are presented for a model where the mass assimilation rate(?a) is an arbitrary fraction(r) of the fractional crystallization rate(?c). The equations also apply to recharge of a crystallizing magma. Relatively simple analytical expressions are obtained for both radiogenic isotope variations (Nd, Sr, Pb) and stable isotopes (O, H) including the effects of mass-dependent fractionation. Forr = 1 a modified zone refining equation is obtained for trace element concentrations, but forr < 1 behavior is a combination of zone refining and fractional crystallization. Asr → ∞, simple binary mixing is approached. The isotopic and trace element “mixing” trends generated can be much different from binary mixing, especially forr < 1. The model provides the basis for a more general approach to the problem of wallrock assimilation, and shows that binary mixing models are insufficient to rule out crustal assimilation as a cause of some of the isotopic variations observed in igneous rocks, including cases where clustering of isotopic values occurs partway between presumed endmember values. The coupled assimilation-fractional crystallization model provides an explanation for certain trace element and isotopic properties of continental margin orogenic magmas (e.g. Sr concentration versus87Sr/86Sr) which had previously been interpreted as evidence against assimilation. So-called “pseudoisochrons” can be understood as artifacts of contamination using this model. A significant correlation exists between country rock age and low143Nd/144Nd ratios in continental igneous rocks, clearly suggestive that crustal contamination is generally important.  相似文献   

19.
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the “Cut-and-Paste” (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13–15 km on a plane dipping 40–47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.  相似文献   

20.
Radiocarbon dating based on geomorphological, archaeological and biological data is widely used in geomorphological studies to reconstruct sequences of climatic variations and coastal evolution during the Holocene. The coastal area of Southern Italy is characterized by aeolian dune belts shaped during the Holocene that crop out along the present shoreline. Archaeological data and previous radiocarbon results suggest three aeolian morphogenetic phases. The first phase corresponds to the end of the rapid post-glacial transgression (7.0–6.0 ka BP); the second to the aeolian sand deposition during the “Greek–Roman” period (2.5–1.9 ka BP); and the most recent phase occurred in the period from the Middle Ages to the present time. The reconstruction of the sequence of the morphogenetic phases was mainly based on radiocarbon analyses carried out on both terrestrial gastropods and marine bivalves. The reliability of the radiocarbon analyses on terrestrial gastropod shells has been questioned by several Authors and a closer understanding of the carbon uptake mechanism in this kind of organisms is needed.A systematic study was carried out by performing Accelerator Mass Spectrometry (AMS) 14C dating on the shells of terrestrial gastropods sampled alive in different geomorphological settings along the Adriatic and Ionian coasts of Southern Italy. The results show significant anomalies in the radiocarbon content and in the carbon stable isotopic ratio. This can be due to the ingestion of 14C-depleted calcium carbonate in the diet of these organisms. We also calculated the carbon fraction from air Xa (between 16% and 48%), plants Xv (between 36% and 73%) and limestone Xc (between 3% and 23%) giving insight to the origin of the age anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号