首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fish assemblage structure was analyzed along an estuarine gradient of a small macrotidal estuary (the Canche, France). Fishes were collected every two months between May 2006 and July 2007 from 12 sampling stations using a 1.5-m beam trawl with a 5 mm mesh size in the cod end. To complement this information, sampling was also performed using 15-m fyke nets (8 mm mesh size in the cod end). For each sample, abiotic (temperature, salinity, pH, oxygen, turbidity, river flow, wind speed and depth) and biotic (macro crustacean species abundances) were recorded. Throughout the study, 28 fish species belonging to 20 families were collected. Fish catches were dominated by juveniles, especially Young-Of-the-Year (YOY) for the majority of the species. According to the Index of Relative Importance (IRI), common goby Pomatoschistus microps, flounder Platichtys flesus, sprat Sprattus sprattus, sea-bass Dicentrarchus labrax and plaice Pleuronectes platessa were the most abundant species, together accounting for 99.2% of the total IRI. Estuarine residents (ER = 66.2%) and marine juvenile migrants species (MJ = 31.4%) were the most important ecological guilds. The structure of the fish assemblage and its relationship to environmental variables was examined using multivariate techniques. Cluster and non-metric multidimensional scaling (nMDS) analysis defined six distinct groups in the Canche estuary, which are discriminated by specific species (SIMPER). Spatio-temporal variations in fish assemblage structure reflect the density peaks of the most abundant species. Spearman rank correlations and canonical correspondence analysis (CCA) showed that among the ten environmental variables examined, temperature, salinity and Crangon crangon (a potential predator for YOY fish or prey for older ones) are the three most important factors influencing fish species richness and abundances. Our observations reinforce the idea that certain fish species may have different life history styles in different geographic areas. The present study highlights the necessity of a better knowledge of the connectivity between estuaries and adjacent marine areas. The Canche constitutes an important ecosystem for fishes and as it is subject to little anthropogenic disturbance; its ichthyofauna can be viewed as a reference or normal assemblage for small temperate macrotidal estuaries.  相似文献   

2.
Variability of fish assemblages across habitat structures can depend on spatial scales. A hierarchical sampling design was used to assess the spatial variability of temperate fish assemblages in different habitats and at multiple scales. Underwater visual censuses were carried out along the coasts of Elba Island (NW Mediterranean) on Posidonia oceanica beds, rocky algal reefs and sandy habitat at three spatial scales, namely tens of metres (individual replicates), hundreds of metres (sites) and tens of kilometres (locations). At the assemblage level, there was a clear relationship between fish and habitat type and the observed habitat‐related differences were largely dependent on species identity. Fish assemblages on P. oceanica beds and rocky reefs shared a high number of species, whereas overlap with sandy assemblages was negligible. Multivariate analyses revealed significant differences in fish assemblages among habitats, although there was also a significant habitat × site interaction. These differences relied mainly upon assemblage composition and species richness. Assemblages on rocky reefs and P. oceanica meadows usually harboured a higher number of species and individuals compared with sandy assemblages. Nevertheless, the patterns of habitat‐related differences in species richness and, especially, in the total number of fish, changed significantly from site to site. Eight species showed significant differences over habitats, but they were not consistent due to the interaction of habitat with site. Predictability of fish at both assemblage and population levels decreased with the scale of observation, and the spatial pattern of fish observed at the smallest scale was likely dependent on factors other than habitat type.  相似文献   

3.
The spatial distribution, abundance, and assemblage structure of macrozoobenthos were examined at 45 stations in a brackish lagoon (Idoura Lagoon, Japan) to examine the animal–environmental relations in estuarine soft-bottom habitats. We found a total of 23 taxa; the polychaetes Heteromastus sp., Hediste spp., and Prionospio japonica and the isopod Cyathura muromiensis numerically dominated the community. Cluster analysis and one-way analysis of similarity (ANOSIM) identified seven groups of stations that had significantly different macrozoobenthic communities; these were subsequently consolidated into five habitat groups according to their association with environmental characteristics. Canonical correspondence analysis (CCA) showed that salinity, silt-clay content, and the oxidation–reduction potential (ORP) of the sediment strongly affected the macrozoobenthos distribution pattern in the lagoon, whereas other factors (e.g., relative elevation of the habitat and sediment organic content) had much weaker effects. Similarity percentages (SIMPER) procedures indicated that the polychaete Notomastus sp. and the bivalve Macoma contabulata were specific to habitats with low salinity and reduced mud, whereas the bivalve Nuttallia olivacea was specific to sandy bottoms. Heteromastus sp. and Hediste spp. achieved their highest densities in rather oxidized sediments. The acid-volatile sulfide (AVS) content in the sediment was suggested as another possible factor affecting macrozoobenthic density. Our results clearly demonstrate that macrozoobenthic assemblages in estuarine soft-bottoms have high spatial heterogeneity on a small scale (e.g., hundreds of meters) related to physical and chemical environmental changes. Our data also suggested the importance of sediment redox condition (e.g., ORP and AVS content) and sediment grain size as structuring factors in estuarine soft-bottom communities as well as the salinity in the habitat.  相似文献   

4.
Seasonal changes in freshwater inflow and other environmental conditions may induce changes in density and species composition of mangrove fishes along estuarine gradients. Fishes within mangrove habitats in a subtropical estuary were sampled monthly from May 1989 to May 1990, using block nets with rotenone and visual censuses. At 18 stations, temperature ranged from 22 to 34°C, depth from 10 to 104cm and underwater visibility from 1 to 13m. Salinity ranged from 0 to 60 upstream, and 35 to 54 mid- and downstream. A total of 573191 individuals (76 species) was observed or collected, with an average density of 6·5 fish m−2. Engraulidae, Atherinidae, Poeciliidae and Cyprinodontidae numerically dominated the assemblage. Distinct assemblages occurred up-, mid- and downstream and maintained coherent groups in these gradient positions over the seasons. Residents totalled 94·5% of the individuals, estuarine transients comprised 5·1% and occasional marine visitors were less than 0·4%. Densities of resident fishes peaked in winter as temperatures and water levels fell, uncorrelated with changes in salinity. These observations suggest that mangrove habitats may sustain diverse and abundant fish communities dominated by euryhaline residents. Although estuarine transients were consistently rare in upstream sub-basins, downstream were found numerous sub-adults of species occurring as adults on nearby reefs (Lutjanidae, Haemulidae). Thus, reef-associated estuarine transients may be abundant in mangrove habitats having near-marine salinities. Contrary to expectations, mangrove habitats in northeastern Florida bay did not function as a nursery as defined under the nursery-ground paradigm: young-of-the-year juveniles of estuarine transient species did not seek low salinity sub-basins. However, northeastern Florida Bay may not be representative of most mangrove estuaries as the area: (1) is without lunar tides and related circulation; (2) has low and variable amounts of submersed vegetation; and (3) experiences severe hypersaline conditions.  相似文献   

5.
This study has analysed for the first time fish composition and assemblage structures of three small macrotidal estuaries of the Eastern English Channel (EEC) and has explored the influences of 19 biotic and abiotic variables on the fish assemblages. Fish from Canche, Authie and Somme estuaries were collected during spring (June 2006 and May 2007) and autumn (September 2006) along the estuarine gradients using a 1.5 m beam trawl. Using identical sampling protocols, the study also analysed and compared for the first time taxonomic and functional aspects of the fish assemblages in 15 estuaries located along the Atlantic and English Channel coasts. SIMPER analysis showed high similarities in fish assemblages in the three EEC estuaries and during either spring or autumn periods. However, intra-estuary similarities were relatively low, indicating that fish assemblage structures (species richnesses or abundances) were more variable within the estuary (salinity gradient) than between estuaries and/or seasons (spring vs autumn). Although numerous environmental variables were included in the study, only 47% of the variability observed in the fish distribution was explained. Fish spatial variations in the EEC estuaries are mostly driven by abiotic variables as opposed to biological interactions. As indicated by CCA, salinity and muddy sediments were the two most important factors structuring the fish assemblages. The macrobenthos being very abundant in the EEC estuaries (580–1121 ind. m−2), the availability of potential prey is probably not a limiting factor in the utilization of estuaries by fish. Contrary to the majority of French estuaries dominated by estuarine species (ES), the fish assemblages of the EEC estuaries are clearly dominated by marine migrant (MM) species (65% on average) with high abundance of juveniles (mostly young-of-the-year). Cluster and SIMPROF's analyses distinguished the functional structure of the 15 estuarine fish assemblages into different clusters. The three EEC estuaries form a similar group with the largest French estuaries (Seine, Loire and Gironde). The latters were characterized by higher MM/ES ratio compared to the other French estuaries. Freshwater flow and tidal range were the main factors associated with this group of estuaries. The results of the present study do not indicate that anthropogenic impacts (chemical contamination) on estuaries affect their ecological functioning as described by the fish ecological guilds. It is suggested that the guild approach may not be useful to provide valuable information on the ecological status of estuaries.  相似文献   

6.
While there is already a comprehensive understanding of the effects of environmental variables, such as dissolved oxygen, temperature and salinity, on the structure, biomass and metabolism of aquatic biota in estuarine habitats, the effect of sedimentation, a harmful underlying factor, remains unclear. The aim of this study was to assess the differences in fish assemblages along the freshwater to salt water gradient of a large tropical estuary, and to evaluate the effects on them of habitat disturbance associated with shallow water sedimentation in the intertidal areas. Fish and environmental variables were recorded in the upper, middle and lower salinity zones of the estuary at ebb tide in both the dry and wet seasons. Sediment samples associated with different levels of habitat disturbance were analysed using granulometry, and their organic content and dissolved oxygen levels were quantified. Water temperature, salinity, pH and dissolved oxygen levels were also measured. Habitat disturbance was found to be correlated with the density, biomass and richness of fish assemblages. A total of 77 species were recorded, forming two distinct fish assemblages, with the Eleotridae family dominating in the upper zone, and Gerreidae, Gobiidae and Tetraodontidae the most common in the middle and lower estuary. Changes in the structure of fish assemblages, including reductions in density, biomass and richness, were associated with disturbance to natural features, where muddy sediment was replaced by sandy sediment and the quantity of organic matter fell. Atherinella brasiliensis was the species which showed a preference for the disturbed areas in the middle and lower zones, while Dormitator maculatus showed a preference for them in the upper estuary. They may be taken as indicators of habitat disturbance due to shallow sedimentation.  相似文献   

7.
Freshwater inflow has a strong impact on the biological, chemical and physical characteristics of estuaries, which in turn affect the distribution and abundance of estuarine organisms. Increased climatic variability associated with climate change is predicated to modify precipitation patterns, which will likely intensify floods in estuaries. The demersal fish assemblage of the freshwater-dominated Great Fish Estuary, South Africa, was sampled using beam trawls, monthly, from December 2013 to November 2014. The first six months of the study were characterised by river flooding and high flow, with estuarine conditions found only in the mouth region; this was followed by six months of intermediate flow, with estuarine conditions recorded up to 10 km from the mouth. River flooding and subsequent reduced salinity resulted in a decrease in species richness and abundances of fishes in the estuary, with only two estuarine species (Glossogobius callidus and Psammogobius knysnaensis) and one marine migrant (Solea turbynei) recorded following river flooding (201 m3 s?1), in January 2014. The greatest species richness and abundances among both marine and estuarine fishes were recorded during intermediate flow conditions. We conclude that although freshwater inflow into estuaries is important for the nursery function of these systems, flooding—especially in freshwater-dominated estuaries—may cause a temporary decline in the abundance of most marine and estuarine fish species, including important bentho-pelagic marine migrant fishery species, such as Argyrosomus japonicus and Pomadasys commersonnii.  相似文献   

8.
We compiled and analyzed past time-series data to evaluate changes in oceanographic conditions and marine ecosystems near the Ieodo ocean research station (IORS) in the East China Sea (N 31°15??C33°45??, E 124°15??C127°45??) in relation to longterm changes in climate and global warming. The environment data we used was a depth-specific time-series of temperature and salinity for the water columns at 175 fixed stations along 22 oceanographic lines in Korean waters, based on bimonthly measurements since 1961 taken by the National Fisheries Research & Development Institute. As an indicator for the ecosystem status of the waters off Ieodo, we analyzed species composition in biomass of fishes caught by Korean fishing vessels in the waters near the IORS (1984?C2010) and summarized the data in relation to the environmental changes using canonical correspondence analysis (CCA). To detect step changes in the time-series of environmental factors, we applied a sequential t-test analysis of regime shift. Correspondence analysis detected a major shift in fish assemblage structure between 1990 and 1993: the dominant species was filefish during 1981?C1992, but chub mackerel during 1992?C2007. This shift in fish assemblage structure seemed to be related to the well-established 1989 regime shift in the North Pacific, which was confirmed again with respect to temperature in the Yellow Sea and the Korea Strait (but not in the waters off the IORS). In overall from 1984 to 2010, salinity was more important than water temperature in CCA, implying that the fluctuation of the Tsushima warm current is a most important force driving the long-term changes in fish assemblage structure in the waters off the IORS. Further multidisciplinary researches are required to identify oceanographic and biological processes that link climate-driven physical changes to fish recruitment and habitat range fluctuations.  相似文献   

9.
Recent variations in the precipitation regime across southern Europe have led to changes in river fluxes and salinity gradients affecting biological communities in most rivers and estuaries. A sampling programme was developed in the Mondego estuary, Portugal, from January 2003 to December 2008 at five distinct sampling stations to evaluate spatial, seasonal and inter-annual distributions of fish larvae. Gobiidae was the most abundant family representing 80% of total catch and Pomatoschistus spp. was the most important taxon. The fish larval community presented a clear seasonality with higher abundances and diversities during spring and summer seasons. Multivariate analysis reinforced differences among seasons but not between years or sampling stations. The taxa Atherina presbyter, Solea solea, Syngnathus abaster, Crystallogobius linearis and Platichthys flesus were more abundant during spring/summer period while Ammodytes tobianus, Callionymus sp., Echiichthys vipera and Liza ramada were more abundant in autumn/winter. Temperature, chlorophyll a and river flow were the main variation drivers observed although extreme drought events (year 2005) seemed not to affect ichthyoplankton community structure. Main changes were related to a spatial displacement of salinity gradient along the estuarine system which produced changes in marine species distribution.  相似文献   

10.
徐勇  马林  李新正  孙悦  龚琳 《海洋与湖沼》2017,48(6):1383-1391
为了研究春季长江口外海底层鱼类群聚特征及其与环境因子的关系,我们根据2015年5月长江口外海底层鱼类的调查资料,使用聚类分析(Cluster)、非参数多维标度排序(NMDS)、相似性分析(ANOSIM)、相似性百分比分析(SIMPER)以及典型对应分析(CCA)等方法对资料进行分析。本研究共记录底层鱼类58种,其中鲈形目种类数最多(21种),鲽形目次之。六丝钝尾虾虎鱼(Amblychaeturichthys hexanema)是优势种。底层鱼类可以划分为3个群组—近海组、南部中间组和南部远海组,不同群组的物种组成差异显著。南部中间组和南部远海组的物种多为东海外海种类,这可能是近岸黑潮底层分支影响的结果。物种数、Margalef丰富度、Shannon-Wiener多样性和Pielou均匀度从近海到与远海呈逐渐增加的趋势。CCA分析表明深度是显著影响底层鱼类的环境因子。短鳄齿鱼(Champsodon snyderi)、丝鳍(Repomucenus virgis)、多棘腔吻鳕(Coelorinchus multispinulosus)等东海外海种类与深度呈正相关,而优势种六丝钝尾虾虎鱼受环境因子影响较小。  相似文献   

11.
Spatial and temporal biodiversity patterns of free-living marine nematodes were studied in Cienfuegos Bay, a tropical semi-enclosed basin in the Caribbean Sea. Taxonomic (to species level) and functional (biological trait) approaches were applied for describing the assemblage structure and relating it to abiotic environment based on a sampling scheme in six subtidal stations and three months. Biological trait approach added relevant information to species pattern regarding relationships between diversity patterns and the abiotic environment. The most common morphotypes were deposit feeding nematodes, with colonising abilities of 2–3 (in a scale from 1 to 5), tail conical cylindrical or filiforme and body slender; and their abundance were correlated with depth, organic matter and silt/clay fraction. In spite of a high turnover of species, functional diversity of assemblages did not change notably in space and time. A result probably due to sampling of the habitat pool of species and to low heterogeneity of the studied muddy bottoms. Chemical pollution (organic enrichment and heavy metals) and hydrodynamic regime possibly drove the biodiversity patterns. Spatial distribution of assemblages support the existence of two well differentiated basins inside the bay, the northern basin more polluted than the southern one. The low hydrodynamic regime would determine a poor dispersion of nematodes resulting in high spatial variance in the assemblage structure; and also the associated hypoxic conditions and pollutants in sediments can explain the dominance of tolerant nematode species such as Daptonema oxycerca, Sabatieria pulchra, Terschellingia gourbaultae, and Terschellingia longicaudata. A comparison of spatial–temporal patterns of biodiversity between Cienfuegos Bay and other semi-enclosed bays in temperate regions suggests several similarities: nematode assemblages are strongly influenced by anthropogenic disturbance, temporal trends are weak or overridden by spatial ones, and few cosmopolitan genera/species tolerant to pollution and hypoxic conditions are dominant.  相似文献   

12.
Spatio-temporal changes in macrozoobenthic assemblage structure were monitored at 8 stations in a river-affected temperate lagoon (Idoura Lagoon, Japan) from May 1997 to May 1998 to assess animal–environment relationships in estuarine soft-bottom habitats. A total of 29 taxa occurred with a predominance of a few polychaete species including Heteromastus cf. similis, Hediste spp., Pseudopolydora cf. kempi and Prionospio japonica. The community structure differed significantly among four habitat types that were characterized by different salinity, sediment characteristics, and/or bottom elevation. For each habitat, macrozoobenthic community structure changed significantly with time, which was discriminated mostly by the lower density of polyhaline opportunistic species such as P. cf. kempi in warmer period. The salinity in the study area was much lower from May to September, mainly due to irrigation discharge from paddy fields, which seemed to be a lethal factor for the polyhaline species. C/N ratio and δ13C value of the sediment implied the accumulation of river-derived organic matters during the high river flow period. Present results showed the significant effects of fluctuating river discharge on the estuarine soft-bottom habitats, suggesting a linkage among terrestrial, riverine and estuarine ecosystems.  相似文献   

13.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

14.
We collected fishes and environmental variables in three zones (upper, middle and lower) of a small open tropical estuary during flood tide. The aim was to test for differences in fish assemblages along a gradient from freshwater to marine waters and to detect any seasonal variation in fishes and environmental variables across these zones. A total of 111 species (18 in the upper, 50 in the middle and 66 in the lower estuary) were recorded, forming three distinct fish assemblages, with the family Eleotridae dominating in the upper, Gerreidae in the middle, and Sciaenidae in the lower estuary. Only two species (Geophagus brasiliensis in the upper and the middle zones, and Eucinostomus argenteus in the middle and the lower zones) composed more than 1% of the total number of individuals in more than a single zone. Short‐term (tidal) changes in salinity in the middle estuary were associated with different assemblages in the three estuarine zones, even in winter, when the differences in salinity are lowest between the middle and the lower zones. Seasonal variation in salinity was irrelevant, except in a protected sidewater lagoon in the middle estuary. Low salinity seasonal change may be related to the lack of seasonal variation in the structure of fish assemblages in all estuarine zones.  相似文献   

15.
Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal–estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different “feeding sub-populations”. Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal–estuarine ecosystem as nursery grounds.  相似文献   

16.
The importance of transitional water ecosystems as nursery habitats and feeding grounds for fish species is well-known. Detailed studies of colonization patterns of fish guilds in response to biotic and abiotic drivers are however unevenly distributed among ecosystem types. We address here the temporal variability of fish assemblages in small non-tidal lagoons in the Mediterranean basin. The study was carried out at the Acquatina lagoon (Lecce, Italy) where four stations, situated in two habitat types along a confinement gradient, were sampled twice per month for one year with fyke nets. Forty-five taxa ranging across 20 families were collected, with the most abundant species, Atherina boyeri, accounting for more than 95% of total abundance. Pooling all species together (excluding sand smelt), the structural features of the assemblage, relative abundance of families, and abundance of individual species all showed significant temporal patterns. Mean abundance peaked in Summer and Autumn and fell in Winter, whereas taxonomic richness and diversity were highest in Summer and lowest in Spring. Within the fish assemblage, multivariate ordination showed temporal segregation of species belonging to the same family or genus and expected to be functionally similar, suggesting that they avoid competition for space and resources by timing inward migration and peak occurrence differently. Of the environmental driving forces, which also showed temporal patterns of variation, salinity was the main factor affecting the distribution of individuals and species. The catch of young individuals of several marine species confirmed the role of this small lagoon as a nursery and feeding area, and emphasized the need for further studies.  相似文献   

17.
18.
Environmental variables have been measured and sampling for ichthyoplankton has been conducted monthly, since April 2001, at three stations, located at the inner (1), middle (2) and outer (3) shelf of the central Cantabrian Sea. This paper presents the results of the study of the ichthyoplankton collected from July 2001 to June 2004. Fish larvae from 99 species, belonging to 37 families, were identified. Families with higher number of species were Gadidae, Sparidae and Labridae. The larval fish assemblage was dominated by pelagic fish species, with Sardina pilchardus, as the most abundant. There was a pronounced spring peak in larval abundance, dominated by S. pilchardus. A smaller peak, dominated by S. pilchardus and Micromesistius poutassou, was recorded in late winter at Stns 2 and 3. This pattern was evident for the three-year study. Results also indicate that this study was limited to the coastal larval fish assemblage inhabiting the central Cantabrian Sea shelf. This assemblage was temporally structured into other three assemblages: winter, late winter–spring and summer–autumn. Temperature was apparently a key factor in larval fish assemblage succession. In a scenario of global warming, this study constitutes a basis to evaluating the ongoing changes in the pelagic coastal ecosystem of the central Cantabrian Sea.  相似文献   

19.
Zooplankton assemblages were studied from January 2007 to January 2008 along the salinity gradient of the Charente estuary (France). A Lagrangian survey was performed monthly at five sampling stations defined by salinity (freshwater, 0.5, 5, 15 and 25) in order to collect zooplankton and measure the main environmental parameters (concentrations of suspended particulate matter, particulate organic carbon, chlorophyll a and phaeopigments). A combination of multivariate cluster analysis, species indicator index and canonical correspondence analysis was used to relate the spatio-temporal patterns of the zooplankton assemblages with environmental drivers. The estuary was divided into three different zones by means of environmental parameters while four zooplankton assemblages were identified along the salinity gradient. The Charente estuary appeared as one of the most turbid systems in Europe, with suspended particulate matter (SPM) concentration reaching 3.5 g l−1 in the Maximum Turbidity Zone (MTZ). Algal heterotrophy and microphytobenthos resuspension from the wide mudflats could be responsible for the relatively high chlorophyll a concentrations measured within this MTZ. Salinity and SPM affected significantly the spatial distribution of zooplankton species while temperature and river flow seemed to control their temporal variations. From a zooplanktonic viewpoint, the highly turbid Charente estuary seemed to match an “ecotone–ecocline” model: the succession of species assemblages along the salinity gradient matched the concept of ecocline while the MTZ, which is a stressful narrow area, could be considered as an ecotone. Although such ecoclinal characteristics seemed to be a general feature of estuarine biocenoses, the ecotone could be more system-specific and biological compartment-specific.  相似文献   

20.
We hypothesized that temporal variation in fish species composition and community structure in a low complexity habitat in the Pueblo Viejo Lagoon, Mexico, is influenced by diel light/dark cycles and tidal stage, and by seasonal changes in salinity and temperature. We collected a total of 17,661 individuals during 2‐h interval sampling over six bi‐monthly 24‐h sampling cycles representing 53 species, of which 11 (~20%) were previously unknown in the system. Diel variation indicated that significantly higher numbers of individuals and species were caught at night, whereas diversity and evenness were higher during the day. Species richness was significantly higher in July and January, whereas diversity and evenness peaked around May; both were correlated with temperature. Diel variation in species composition was influenced primarily by the light/dark cycle. Cluster analyses of each diel cycle separated fish assemblages from midday samples from those of nocturnal samples, separated by an extended wide transition period as fish moved at dawn and during the late afternoon/dusk. Significant shifts (as determined by MANOVA) in assemblage structure occurred between months. Canonical correspondence analysis showed that temperature and day/night effects were the most important environmental variables structuring the fish community. This constrained ordination also defined species with specific habitat preferences as follows: (i) diurnal, warm temperature species (mainly planktivores) (Brevoortia gunteri, Cetengraulis edentulus, Diapterus auratus, and Membras martinica); (ii) nocturnal, warm temperature species (mainly predators) (Citharichthys spilopterus, Cathorops melanopus, and Bairdiella spp.); and (iii) low temperature, diurnal species (Brevoortia patronus and Mugil curema) or those with twilight and nocturnal distributions (Anchoa mitchilli, the most numerically abundant species). Our results indicate that diel and seasonal changes in fish community structure were mainly related to day/night cycles and temperature regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号