首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ziyong Sun  Xiang Long  Rui Ma 《水文研究》2016,30(9):1388-1402
There is considerable interest in naturalizing flow regime on managed rivers to slow the spread of saltcedar (Tamarix ramosissima) invasion in southwestern USA or to preserve riparian forests dominated by saltcedar and other species in northwestern China. However, little is known about the responses of established saltcedar in water sources to frequent intra‐annual fluctuation of water table resulting from this new, more dynamic flow regime. This study investigates how saltcedar at a riparian site in the middle reaches of the Heihe River, northwest China, responds in water sources use to intra‐annual water table fluctuations. Stable oxygen isotope was employed to determine accurate depth at which saltcedar obtains its water supply, and soil moisture monitoring was used to determine sources of plant‐available soil water. We found that the primary zone of water uptake by saltcedar were stable at 25–60 cm depth, but the water sources used by saltcedar switched between groundwater and soil moisture with the water table fluctuations. Saltcedar derived its water from groundwater when water table was at depth less than 60 cm but switched to soil moisture at 25–60 cm depth when water table declined. It is supposed that the well‐developed clay layer at 60–80 cm depth constrained lateral roots of saltcedar to the soil layers above 60 cm, while the fine‐textured soils at this site, which were periodically resaturated by rising groundwater before the stored soil moisture had become depleted, provided an important water reservoir for saltcedar when groundwater dropped below the primary zone of fine roots. The root distribution of saltcedar may also be related to local groundwater history. The quick decline in water table in the early 1980s when the riparian saltcedar had established may strand its roots in the shallow unsaturated zone. We suggested that raising the water table periodically instead of maintaining it invariably above the rooting depth could sustain desired facultative phreatophytes while maximizing water deliveries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Riparian vegetation is important for stream functioning and as a major landscape feature. For many riparian plants, shallow groundwater is an important source of water, particularly in areas where rainfall is low, either annually or seasonally, and when extended dry conditions prevail for all or part of the year. The nature of tree water relationships is highly complex. Therefore, we used multiple lines of evidence to determine the water sources used by the dominant tree species Eucalyptus camaldulensis (river red gum), growing in riparian and floodplain areas with varying depth to groundwater and stream perenniality. Dendrometer bands were used to measure diel, seasonal, and annual patterns of tree water use and growth. Water stable isotopes (δ2H and δ18O) in plant xylem, soil water, and groundwater were measured to determine spatial and temporal patterns in plant water source use. Our results indicated riparian trees located on relatively shallow groundwater had greater growth rates, larger diel responses in stem diameter, and were less reactive to extended dry periods, than trees in areas of deep groundwater. These results were supported by isotope analysis that suggested all trees used groundwater when soil water stores were depleted at the end of the dry season, and this was most pronounced for trees with shallow groundwater. Trees may experience more frequent periods of water deficit stress and undergo reduced productivity in scenarios where water table accessibility is reduced, such as drawdown from groundwater pumping activities or periods of reduced rainfall recharge. The ability of trees to adapt to changing groundwater conditions may depend on the speed of change, the local hydrologic and soil conditions as well as the species involved. Our results suggest that Ecamaldulesis growing at our study site is capable of utilizing groundwater even to depths >10 m, and stream perenniality is likely to be a useful indicator of riparian tree use of groundwater.  相似文献   

3.
The heat-pulse technique was used to estimate year-long water uptake in a discharge zone plantation of 9-year-old clonal Eucalyptus camaldulensis Dehnh. near Wubin, Western Australia. Water uptake matched rainfall closely during weter months but exceeded rainfall as the dry season progressed. Average annual water uptake (1148 mm) exceeded rainfall (432 mm) by about 2.7 fold and approached 56% of pan evaporation for the area. The data suggest that at least 37% (i.e. (1/2.7) × 100) of the lower catchment discharge zone should be planted to prevent the rise of groundwater.

Water uptake varied with soil environment, season and genotype. Upslope trees used more water than did downslope trees. Water uptake was higher in E. camaldulensis clone M80 than in clone M66 until late spring. The difference reversed as summer progressed. Both clones, however, have the potential to dry out the landscape when potential evapotranspiration exceeds rainfall. This variation in water uptake within the species indicates the potential for manipulating plantation uptake by matching tree characteristics to site characteristics.

Controlled experiments on the heat-pulse technique indicated accuracy errors of approximately 10%. This, combined with the ability to obtain long-term, continuous data and the superior logistics of use of the heat-pulse technique, suggests that results obtained by it would be much more reliable than those achieved by the ventilated chamber technique.  相似文献   


4.
Riparian cottonwood forests in dry regions of western North America do not typically receive sufficient growing season precipitation to completely support their relatively high transpiration requirements. Water used in transpiration by riparian ecosystems must include alluvial groundwater or water stored in the potentially large reservoir of the unsaturated soil zone. We used the stable oxygen and hydrogen isotope composition of stem xylem water to evaluate water sources used by the dominant riparian cottonwood (Populus spp.) trees and shrubs (Shepherdia argentea and Symphoricarpos occidentalis) in Lethbridge, Alberta, during 3 years of contrasting environmental conditions. Cottonwoods did not exclusively take up alluvial groundwater but made extensive use of water sourced from the unsaturated soil zone. The oxygen and hydrogen isotope compositions of cottonwood stem water did not strongly overlap with those of alluvial groundwater, which were closely associated with the local meteoric water line. Instead, cottonwood stem water δ18O and δ2H values were located below the local meteoric water line, forming a line with a low slope that was indicative of water exposed to evaporative enrichment of heavy isotopes. In addition, cottonwood xylem water isotope compositions had negative values of deuterium excess (d‐excess) and line‐conditioned (deuterium) excess (lc‐excess), both of which provided evidence that water taken up by the cottonwoods had been exposed to fractionation during evaporation. The shrub species had lower values of d‐excess and lc‐excess than had the cottonwood trees due to shallower rooting depths, and the d‐excess values declined during the growing season, as shallow soil water that was taken up by the plants was exposed to increasing, cumulative evaporative enrichment. The apparent differences in functional rooting pattern between cottonwoods and the shrub species, strongly influenced the ratio of net photosynthesis to stomatal conductance (intrinsic water‐use efficiency), as shown by variation among species in the δ13C values of leaf tissue.  相似文献   

5.
Water transpired by trees has long been assumed to be sourced from the same subsurface water stocks that contribute to groundwater recharge and streamflow. However, recent investigations using dual water stable isotopes have shown an apparent ecohydrological separation between tree‐transpired water and stream water. Here we present evidence for such ecohydrological separation in two tropical environments in Puerto Rico where precipitation seasonality is relatively low and where precipitation is positively correlated with primary productivity. We determined the stable isotope signature of xylem water of 30 mahogany (Swietenia spp.) trees sampled during two periods with contrasting moisture status. Our results suggest that the separation between transpiration water and groundwater recharge/streamflow water might be related less to the temporal phasing of hydrologic inputs and primary productivity, and more to the fundamental processes that drive evaporative isotopic enrichment of residual soil water within the soil matrix. The lack of an evaporative signature of both groundwater and streams in the study area suggests that these water balance components have a water source that is transported quickly to deeper subsurface storage compared to waters that trees use. A Bayesian mixing model used to partition source water proportions of xylem water showed that groundwater contribution was greater for valley‐bottom, riparian trees than for ridge‐top trees. Groundwater contribution was also greater at the xeric site than at the mesic–hydric site. These model results (1) underline the utility of a simple linear mixing model, implemented in a Bayesian inference framework, in quantifying source water contributions at sites with contrasting physiographic characteristics, and (2) highlight the informed judgement that should be made in interpreting mixing model results, of import particularly in surveying groundwater use patterns by vegetation from regional to global scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


7.
Discharge of saline groundwater from Eucalyptus forests on a semi-arid floodplain was directly determined by first measuring transpiration rates from the forests, and then partitioning the transpiration flux into groundwater discharge and soil water depletion. This partitioning was achieved by identifying the source of the transpired water with naturally occurring stable isotopes of water. Transpiration rates were low, being about 0.3 mm day−1 from three E. largiflorens sites and up to 2 mm day−1 from an E. camaldulensis site. There was no significant variation in transpiration across seasons, indicating that transpiration was limited by environmental factors other than evaporative demand. Despite its salinity (electrical conductivities of 11–33 dS m−1), the groundwater was used by the forests at all sites and all times, and made up 100% of transpiration in more than half of the measurements, and 40–80% in the remainder. There was some consistency in water uptake patterns. E. camaldulensis tended to take up shallow soil water and groundwater simultaneously, as did trees at one of the E. largiflorens sites. At the driest sampling time, however, groundwater was the only source of water for trees at both of these sites. Trees at the remaining two E. largiflorens sites generally relied solely on the groundwater. The tree water source results indicate that groundwater discharge fluxes were between 40 and 100% of the transpiration fluxes at these sites. These groundwater discharge fluxes were small in terms of regional groundwater balances, but would be important in the salinisation of the soils. Additionally, uptake of water from the soil profile by the trees substantially increased groundwater discharge compared with discharge from the soils had they been bare of vegetation.  相似文献   

8.
Groundwater-dependent ecosystems are often defined by the presence of deeply rooted phreatophytic plants. When connected to groundwater, phreatophytes in arid regions decouple ecosystem net primary productivity from precipitation, underscoring a disproportionately high biodiversity and exchange of resources relative to surrounding areas. However, groundwater-dependent ecosystems are widely threatened due to the effects of water diversions, groundwater abstraction, and higher frequencies of episodic drought and heat waves. The resilience of these ecosystems to shifting ecohydrological–climatological conditions will depend largely on the capacity of dominant, phreatophytic plants to cope with dramatic reductions in water availability and increases in atmospheric water demand. This paper disentangles the broad range of hydraulic traits expressed by phreatophytic vegetation to better understand their capacity to survive or even thrive under shifting ecohydrological conditions. We focus on three elements of plant water relations: (a) hydraulic architecture (including root area to leaf area ratios and rooting depth), (b) xylem structure and function, and (c) stomatal regulation. We place the expression of these traits across a continuum of phreatophytic habits from obligate to semi-obligate to semi-facultative to facultative. Although many species occupy multiple phreatophytic niches depending on access to groundwater, we anticipate that populations are largely locally adapted to a narrow range of ecohydrological conditions regardless of gene flow across ecohydrological gradients. Consequently, we hypothesize that reductions in available groundwater and increases in atmospheric water demand will result in either (a) stand replacement of obligate phreatophytic species with more facultative species as a function of widespread mortality in highly groundwater-dependent populations or (b) directional selection in semi-obligate and semi-facultative phreatophytes towards the expression of traits associated with highly facultative phreatophytes in the absence of species replacement. Anticipated shifts in the expression of hydraulic traits may have profound impacts on water cycling processes, species assemblages, and habitat structure of groundwater-dependent woodlands and riparian forests.  相似文献   

9.
Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.  相似文献   

10.
A combination of micro-meteorological, soil physical and groundwater chemical methods enabled the water balance of a tropical eucalypt savanna ecosystem in Northern Australia to be estimated. Heat pulse and eddy correlation were used to determine overstory and total evapotranspiration, respectively. Measurements of soil water content, matric suction and water table variations were used to determine changes in soil moisture storage throughout the year. Groundwater dating with chlorofluorocarbons was used to estimate net groundwater recharge rates, and stream gauging was used to determine surface runoff. The wet season rainfall of 1585 mm is distributed as: evapotranspiration 810 mm, surface runoff (and shallow subsurface flow) into the river 410 mm, groundwater recharge 200 mm and increase in soil store 165 mm. Of the groundwater recharge, 160 mm enters the stream as baseflow in the wet season, 20 mm enters as baseflow in the dry season, and the balance (20 mm) is distributed to and used by minor vegetation types within the catchment or discharges to the sea. In the dry season, an evapotranspiration of 300 mm comprises 135 mm rainfall and 165 mm from the soil store. Because of the inherent errors of the different techniques, the water balance surplus (estimated at 20 mm) cannot be clearly distinguished from zero. It may also be as much as 140 mm. To our knowledge, this is the first time that such diverse methods have been combined to estimate all components of a catchment's water balance.  相似文献   

11.
Our understanding of how groundwater mediates evapotranspiration/streamflow partitioning is still fragmented and catchment studies under changing vegetation conditions can provide a useful frame for integration. We explored this partition in a flat sedimentary dry catchment in central Argentina in which the replacement of native vegetation with rainfed crops was accompanied by the abrupt formation of groundwater-fed streams by subsurface erosion (i.e., sapping) episodes. Historical records indicated widespread water table rises (~0.3 m y−1 on average). Groundwater level and stream baseflow fluctuated seasonally with minima in the warm rainy season, indicating that evaporative discharge rather than rainfall shapes saturated flows. Diurnal groundwater level fluctuations showed that plant uptake was widespread where water tables are shallow (<3 m) but restricted to deep-rooted Prosopis forests where they are deep (7–10 m). MODIS and LANDSAT NDVI revealed a long-term greening for native vegetation, new wetlands included, but not for croplands, suggesting more limited evapotranspiration-groundwater level regulation under agriculture. Close to the deepest (20 m) and most active incisions, groundwater level and greenness declined and stream baseflow showed no seasonal fluctuations, hinting decoupling from evapotranspiration. Intense ecological and geomorphological transformations in this catchment exposed the interplay of five mechanisms governing evapotranspiration/streamflow partition including (a) unsaturated uptake and both (b) riparian and (c) distributed uptake from the saturated zone by plants, as well as (d) deepening incisions and (e) sediment deposits over riparian zones by streams. Acknowledging the complex interplay of these mechanisms with groundwater is crucial to predict and manage future hydrological changes in the dry plains of South America.  相似文献   

12.
Riparian trees play a critical role in the ecological function of rivers, yet are threatened by anthropogenic change to the hydrological cycle. Identifying the sources of water used by riparian trees can inform sustainable water policy. We used isotopic analysis complemented by measurements of plant water relations to assess water sources for riparian trees at two sites with contrasting hydrogeological processes; one with an alluvial aquifer overlaying an aquitard, and one where fault-induced preferential pathways in the aquitard allowed the flow of deeper, older groundwater from a regional aquifer to the alluvium. At both sites, plant water potential, stomatal conductance, and plant water isotope composition in the xylem sap of riparian trees were collected from two landscape positions, the riverbank and floodplain. We used a Bayesian mixing model (MixSIAR) to assess differences in the proportion of water sources for sites and landscape positions. We found that xylem water isotope values differed between the two sites in line with their hydrogeological characteristics, with trees at the regional aquifer site using water sourced from the regional groundwater and trees at the site with only an alluvial aquifer present using a mixture of water sources, with no dominant source identified. Higher plant predawn water potential values at the regional site indicated greater water availability and support the inference that plants were using more groundwater at the regional site compared to the alluvial site. Trees closer to the river had higher isotope values, indicative of surficial water sources i.e. shallow soil water and river water. Our findings show that the water sources used by riparian trees reflect local hydrogeology and resource availability. Water managers should identify and protect plant water sources to ensure maintenance of riparian trees.  相似文献   

13.
枯落物分解过程是湿地生态系统生源要素生物地球化学循环的关键环节.研究湿地枯落物分解过程是揭示湿地生态功能机理的关键.洪泛平原湿地枯水期的地下水位及丰水期的洪水淹没深度和持续时间都是湿地枯落物分解过程的重要调控因素.本研究采用分解袋法和原位观测模拟试验研究了鄱阳湖优势湿地植物薹草枯落物分解及碳、氮、磷释放对枯水期转化到丰水期的响应.利用鄱阳湖湿地洲滩的高程差选取4个水位梯度,在枯水期4个梯度分别是G-H(高地下水位带)、G-MH(中高地下水位带)、G-ML(中低地下水位带)和G-L(低地下水位带),而在丰水期这4个梯度又转变为G-H(深淹水带)、G-MH(中度深淹水带)、G-ML(中度浅淹水带)和G-L(浅淹水带).研究结果表明:无论在枯水期内还是在丰水期内,4个梯度带之间薹草枯落物干物质残留率及分解速率都具有极显著的差异性.在枯水期内,4个梯度分解速率的大小关系为:G-HG-MHG-MLG-L,在丰水期内,分解速率大小关系发生了反转,即为:G-LG-MLG-MHG-H.薹草枯落物碳、氮、磷相对归还指数表现出与干物质相似的差异性.本研究可为湿地生态系统生物地球化学循环过程对水文节律的响应研究提供数据和理论支撑,也为鄱阳湖基于水位调控下的生态系统管理提供新的认识和决策依据.  相似文献   

14.
In this work, we study groundwater system temporal scaling in relation to plant water use and near‐river‐stage fluctuations in riparian zones where phreatophytes exist. Using detrended fluctuation analysis (DFA), we investigate the influence of regular diurnal fluctuations due to phreatophyte water use on temporal scaling properties of groundwater level variations. We found that groundwater use by phreatophytes, at the field site on the Colorado River, USA, results in distinctive crossovers (slope changes when the plots are fitted with straight lines) in the logarithm plots of root‐mean‐square fluctuations of the detrended water level time series versus time scales of groundwater level dynamics. For groundwater levels monitored at wells close to the river, we identified one crossover at ~1 day in the scaling characteristics of groundwater level variations. When time scale exceeds 1 day, the scaling properties decrease from persistent to close to 1/f noise, where f is the frequency. For groundwater levels recorded at wells further away from the river, the slope of the straight line fit (i.e. scaling exponent) is smallest when the time scale is between 1 and 3 days. When the time scale is < 1 day, groundwater variations become persistent. When the time scale is between 1 and 3 days, the variations are close to white noise, but return to persistent when the time scale is > 3 days. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical model previously developed to systematically examine groundwater flow in vertical section near shallow surface water bodies such as lakes, wetlands and ponds is further developed to include simulation of the distribution patterns of hydrogeochemical and stable isotopic tracers in relation to the surface water body and the geometry of distribution patterns of the tracers in the groundwater release zone of the lake. Many different possible flow regimes are identified, however, in this paper attention is focused on flow-through water bodies, as these are the flow regimes observed in field validation. Two shallow lakes on the Swan Coastal Plain of south-west Western Australia are the subject of field studies where hydrogeochemical and stable isotopes are used to validate the flow-through groundwater flow regime predicted by the modelling confirming the validity of the approach. The flow regime transition diagrams introduced in earlier papers are extended to include consideration of the hydrogeochemical and stable isotopic indices ClL/Cl+ and (1000+δL)/(1000+δ+). These ratios are introduced as an additional two of nine non-dimensional ratios that are necessary to analyse the problem. The ratios represent the chloride and isotopic composition (ClL and δL), respectively, in the groundwater release zones of the lakes, relative to these parameters in the groundwater capture zone (Cl+ and δ+) for the lake. Field data from the case studies plotted on appropriately configured transition diagrams demonstrates the overall validity of the modelling approach and its underlying assumptions. It is concluded that isotopic and hydrogeochemical data are invaluable in interpreting the interaction between lakes or wetlands and regional aquifers as it is very difficult to make physical or hydraulic measurements in the field that allow an understanding of lake–aquifer interaction. The tools and concepts developed that are summarized in the presented transition diagrams are invaluable starting points for the consideration and analysis of other case-specific examples of groundwater–surface water interaction and will improve the scientific basis of decision-making concerning lake and wetland management and groundwater interaction by water resource and environmental managers.  相似文献   

16.
Chloride is a major anion in soil water and its concentration rises essentially as a function of evapotranspiration. Compared to herbaceous vegetation, high transpiration rates are measured for isolated trees, shelterbelts or hedgerows. This article deals with the influence of a tree hedge on the soil and groundwater Cl? concentrations and the possibility of using Cl? as an indicator of transpiration and water movements near the tree rows. Cl? concentrations were measured over 1 year at different depths in the unsaturated zone and in the groundwater along a transect intersecting a bottomland oak hedge. We observed a strong spatial heterogeneity of Cl? concentrations, with very high values up to 2 g l?1 in the unsaturated zone and 1·2 g l?1 in the upper part of the groundwater. This contrasts with the low and homogeneous concentrations (60–70 mg l?1) in the deeper part of the groundwater. Cl? accumulation in the unsaturated zone at the end of the vegetation season allows us to identify the active root zone extension of trees. In winter, upslope of the tree row, downwards leaching partly renews the soil solution in the root zone, while the slow water movement under the trees or farther downslope results in Cl? accumulation and leads to a salinization of the soil and groundwater. This salinization is of the same order as experimental conditions produce negative effects on oak seedlings. The measurement of Cl? concentrations in the unsaturated zone under tree rows at the end of the vegetation season would indicate whether certain topographic, pedological or climatic conditions are likely to favour a strong salinization of the soil, as observed in the present study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Alan R. Hill 《水文研究》1990,4(2):121-130
Groundwater cation concentrations in relation to hydrologic flow paths were studied in the riparian forest zone of a small headwater catchment near Toronto, Ontario. Groundwater entering the riparian zone from uplands showed significant differences in cation concentrations between slope-foot and near-stream locations. Mean Ca, Mg, K, and Na concentrations in shallow groundwater at the upland perimeter of the riparian forest were 65-0, 11-2, 0-7, and 1-8 mg L?1 respectively. Mean Ca, Mg, K, and Na concentrations in deep groundwater flowing upwards through glacial sands beneath the riparian zone were 52-1, 15-1, 1-3, and 2-6 mg L?1 respectively. Shallow groundwater emerged as slope-foot springs producing surface rivulets which crossed the riparian zone to the streams. Deep groundwater flowed upward through organic soils into the rivulets and also discharged directly to the streams as bed and bank seepage. Springs had higher Ca concentrations and lower Mg, K, and Na values than rivulets entering the streams. Conversely, Mg, K, and Na concentrations were higher and Ca concentrations were lower in bank seeps in comparison to rivulets. These results suggest that differences in cation concentrations in groundwater entering the streams result from initial contrast in the chemistry of shallow and deep groundwater rather than from the effects of riparian soils and vegetation.  相似文献   

18.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

19.
20.
Runoff generation and dynamics is an important issue in watershed and water resource management, but the mechanism in large scale is unclear and site-dependent. For this reason, spatial variations of δD and δ18O of river water and their sources within large-area of the Heishui Valley of the upper Yangtze River in western China were investigated during the wet season. A total 117 river water samples were collected at 13 sampling sites located at the junction of the principal river course and its tributaries. The results showed no spatial variations of either δD or δ18O values existed among tributary sampling sites A, B, E, F, H and I during the wet season, and significantly spatial variation occurred between tributary sampling sites A, B, E, F, H, I and site K; which indicated different proportions of rain entering river water should lead to spatial variation of water isotopes. The hydrograph separation analysis, based on the isotope data of river water, meltwater and rain water samples, showed the contribution of snow and glacier meltwater varied from 63.8% to 92.6%, and that of rain varied from 7.4% to 36.2%; which meant that snow and glacier meltwater was the main supplying water source of baseflow in the Heishui Valley. And the roles of glacier and snow meltwater should be significantly noticed in water resource management in this alpine valley at the rim of the Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号