首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
东北地区春玉米关键生育期干旱对根系生长的影响   总被引:1,自引:0,他引:1  
利用锦州大型土壤水分控制试验场和根系观测系统开展东北地区春玉米拔节与抽雄期不同程度干旱胁迫试验,采用微根管方法观测春玉米根系的生长,研究春玉米不同发育期干旱胁迫对40 cm、120 cm和160 cm土壤深度根系分布的影响。结果表明:春玉米不同土壤深度直径为1 mm以下的细根多于粗根,40 cm土壤深度细根所占比例最大,与之相比,120 cm和160 cm土壤深度直径为1 mm以上粗根所占比例有所增大。春玉米拔节期干旱初期40 cm土壤深度根长密度(Root Length Density,RLD)随干旱加重而增大,干旱胁迫可以促进玉米根系向土壤深处生长;乳熟期后玉米上层根系因拔节期干旱而提前衰老;抽雄后干旱也可使玉米根系向更深层土壤伸展,但干旱出现过晚将减弱对根系生长的促进作用。此外,玉米长期干旱后复水可使根系在短时间内补偿性快速生长。  相似文献   

2.
农田土壤水分实用模式初探   总被引:3,自引:1,他引:3  
申双和  金龙 《气象科学》1996,16(3):240-248
根据土壤水分运动方程建立了旱地农田土壤水分动态数值模拟模式,该模式利用作的发育期和一些参数估算作物根系深度和相对根密度垂直分布动态变化,避免过去对根系进行的困难,增强了模式的应用性能。通过参数敏感性检验和模式应用效果分析表明,该模式可用于干旱、半干旱气候区农田土壤水分预测,为分析作物水分利用和确定农田灌溉量提供科学依据。模式所需的输入为初始土壤含水量、土壤物理常数、作和播种期、逐日平均气温、相地湿  相似文献   

3.
利用多年多点高密度、大样本,不同土壤类型、不同作物和不同发育阶段10~50 cm土壤测墒资料及多年冬小麦、夏玉米生理观测资料,用建立回归方程、最优分割法、点图法、保证率法、平均值法等多种统计方法集成,并考虑土壤水分对作物生理的影响,得出6种土壤类型冬小麦和夏玉米2种作物4个主要发育阶段的重旱、轻旱、适宜、偏湿4个土壤墒情等级指标。把确定的指标,输入到卫星遥感墒情监测系统的指标模板中,可提供更接近实际、宏观的遥感土壤墒情分布情况和作物受旱面积。  相似文献   

4.
土壤水分条件对冬小麦生长发育及产量构成影响研究   总被引:2,自引:0,他引:2  
通过2011-2013年中国气象局固城生态环境与农业气象试验站冬小麦种植试验,利用冬小麦不同生育期土壤湿度、根长密度、株高、绿叶面积和产量等资料,研究不同土壤水分条件对河北固城冬小麦生长发育和产量构成的影响。结果表明:2011-2012年固城站冬小麦0-50 cm土壤相对湿度>50%为冬小麦适宜土壤湿度。2012-2013年固城站冬小麦各生育期0-80 cm土壤相对湿度<55%时,尽管80-120 cm土壤相对湿度为55%-80%,但冬小麦根系和产量构成要素均较小。冬小麦各生育期0-80 cm土壤相对湿度为55%-70%时,冬小麦根系总量最多,则冬小麦生长发育最好,产量构成要素均较好,总产量最高。冬小麦各生育期0-120 cm土壤相对湿度<55%时,冬小麦根系总量最小,且根系集中分布的深度也较浅,总产量最小。冬小麦各生育期0-120 cm土壤相对湿度>80%时,冬小麦根系总量较多,但总体产量比0-80 cm土壤相对湿度为55%-70%时低。  相似文献   

5.
干旱及灌溉对冬小麦根系和产量的影响研究   总被引:1,自引:0,他引:1  
在郑州农业气象试验站开展不同程度干旱、灌溉试验,研究了不同水分条件对冬小麦根系活力、形态及产量的影响。结果表明,干旱条件下,冬小麦根系活力和根直径均有明显的降低,根长有明显增加,土壤下层所占根系总体积比例增大,且随着发育期的推进,下层根系所占比例呈现增大的趋势,水分利用效率有明显提高;随着干旱程度的增加,上述变化趋势更加明显。在灌溉量相同的情况下,越冬期灌溉,有利于冬小麦根系活力和根直径增加,但不利于根系的向下伸展;返青期和拔节期灌溉有利于根系向下伸展、水分利用效率提高、理论产量增加,但不利于根系活力和直径的增加;拔节期灌溉,可适当增大灌溉量,减少灌溉次数,以提高水分利用效率。综合根系形态和活力、水分利用效率及产量,在冬小麦干旱持续发生条件下,在返青期、孕穗期灌水600 m~3·hm~(-2)左右,可根据干旱程度适当增减灌水量,重旱条件下适当增加灌水次数,少量多灌缓解旱情,而重大干旱年份灌水困难条件下可只在拔节期灌水600 m~3·hm~(-2),以实现产量的减损和节水效果。  相似文献   

6.
根系吸水过程对地表能量平衡和水循环起着重要作用,目前不同的根系吸水过程参数化方案对青藏高原陆面过程模拟的影响尚不明确,探讨相关参数化方案的影响,可以为今后建立陆面过程模式根系参数化方案提供参考。本文利用2010年6月1日至9月30日青藏高原玛曲站的观测资料作为大气强迫资料,驱动BCC_AVIM模式(北京气候中心陆面模式)引入不同的根系吸水过程参数化方案,对玛曲站2010年6月1日至9月30日时段感热通量、潜热通量、土壤温度、土壤含水量等要素进行数值模拟,分析根系吸水过程参数化方案对青藏高原地区陆面过程的影响。模式中有关根系吸水过程的参数化方案主要分为根分布模型和土壤水分对根系有效性函数两类,根分布模型用Jackson方案、Schenk方案替换,土壤水分对根系有效性函数用Li方案、LSM1.0方案、CLM4.5方案替换。对比结果表明:不同的根系吸水过程参数化方案对土壤温度、土壤含水量的模拟影响较小,对感热通量、潜热通量模拟影响较大,尤其对冠层蒸腾量模拟差异显著,相关参数化方案的变动直接影响冠层蒸腾量。两类方案模拟的差异受降水的影响,在多雨期,根分布对比方案与原模式方案模拟的感热、潜热通量间存在较大差异;在少雨期,土壤水分对根系有效性函数对比方案与原模式方案模拟的感热、潜热通量间存在较大差异。  相似文献   

7.
根据1991~1996年郑州冬小麦播种前0~200 cm的土壤水分观测资料,应用3次多项式模拟了底墒的垂直分布。结果表明土壤水分随土层深度增加的变化趋势,0~50 cm土壤水分与0~200 cm的底墒相关达到0.01显著水平,可以用0~50 cm土壤水分推算0~200 cm土层底墒。  相似文献   

8.
一种改进的土壤水分平衡模式   总被引:7,自引:0,他引:7  
申双和  李胜利 《气象》1998,24(6):17-21
将美国学者,J.T.Ritchie等研制的作物生长模拟模式(CERES-小麦模式)中的土壤水分平衡子模式应用于我国半干旱地区甘肃省西峰市农业气象试验站固定地块麦地土壤水分的模拟,对原有模式中潜在蒸散、地表蒸发和作物蒸腾加以修正,同时,为增强模式的应用性能,引入一种由作物生育期来估算作物根系最大深度和土壤各层相对根密度的方法。改进后的土壤水分平衡模式取得较好的应用效果,为旱地农田土壤水分管理提供了一  相似文献   

9.
宋欣  邢曼曼  袁静  杨萌 《山东气象》2015,35(4):29-33
利用潍坊地区1981—2010年的气象资料,根据主要农业气象灾害指标,统计潍坊地区冬小麦生长周期发生干旱、晚霜冻和干热风等主要气象灾害的发生频次,分析了冬小麦生产主要气象灾害的时空变化规律,结果表明:潍坊冬小麦发生干旱程度以轻旱为主,中旱次之,重旱发生较少,特旱在返青至抽穗期间发生较多;潍坊冬小麦发生晚霜冻的程度以轻霜冻为主,重霜冻次之;潍坊冬小麦灌浆成熟期间发生干热风的程度以轻干热风日数为主,重干热风日数次之,发生干热风年型的程度是轻干热风年型较多,重干热风年型较少。  相似文献   

10.
春季干旱是威胁海南岛番茄生长的主要灾害,为了实现番茄春季干旱实时监测预警,需要建立合适的干旱等级指标。以持续干旱日数和补充水量为试验因子,进行2因素9水平的均匀设计试验,以番茄死苗率评估干旱程度,筛选番茄干旱致灾因子,以土壤相对湿度划分干旱等级为参考,构建干旱灾害等级指标,分析番茄生理参数和产量对不同等级干旱胁迫的响应。研究结果表明:在干旱胁迫下,番茄死苗率呈明显的增加趋势,与持续干旱日数的一次项和二次项关系显著;在不同深度土壤层中,番茄死苗率与20 cm土壤相对湿度的相关关系最明显,相关系数达到-0.84;以20 cm土壤相对湿度划分的干旱等级为参考,得到番茄无旱、轻旱、中旱、重旱的等级指标分别为26 d、26~31 d、31~35 d、≥35 d。在无旱-轻旱-中旱-重旱胁迫下,番茄净光合速率、气孔导度和蒸腾速率分别呈减小-增大-减少-减小的趋势,胞间CO_2分别呈减少-增大-增大-增大,番茄相对产量损失逐渐加重。  相似文献   

11.
试验在中国气象局固城农业气象试验基地人工控制农田水分试验场进行。在底墒充足的条件下采用三种水分处理:I1拔节期一次性供水75 mm; I2返青期供水37.5 mm, 拔节期供水37.5 mm; ICK生长季内无水分供应。生育期内遮去自然降水。试验结果表明, I1处理由于有充足的底墒配合有限水分胁迫, 有助于减少冬小麦表土层 (0~30 cm) 的根生物量, 增加根系干物质向土壤深层分配, 挖掘深层土壤水分, 提高了土壤水供应量和有效底墒供水率.另外, I1处理增加了需水关键期的有效蒸腾耗水比例, 提高了水分利用效率.虽然由于前期的水分胁迫降低了I1处理总穗数, 但由于增加了籽粒数和籽粒重, 产量反而有所增加。  相似文献   

12.
冬小麦土壤深松保墒增产效应试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用土壤深松 45cm、30 cm处理打破犁底层 ,1 996~ 1 998年连续进行 2个年度的冬小麦保墒、增产效应田间试验 .试验结果表明 :土壤深松处理后可减少冬小麦全生育期 0~ 1 0 0 cm的作物耗水量 ,促进根系对 1 0 0~ 2 0 0 cm土层土壤水分的利用 ,提高冬小麦的产量耗水比 .土壤深松处理能明显增加 0~ 30 cm土层的土壤湿度和含水量 ,降低 0~ 50 cm土层的土壤容重 .有利于冬小麦根系、茎、叶的生长发育和总生物量的累积 .土壤深松 45cm处理 2年平均冬小麦增产 7.0 % ,土壤深松 30 cm处理第一年增产 7.7% .冬小麦土壤深松保墒增产效应的适宜深松深度为 30 cm.  相似文献   

13.
土壤水分对冬小麦影响机制研究   总被引:5,自引:1,他引:5  
郭建平  高素华 《气象学报》2003,61(4):501-506
文中通过试验系统地研究了冬小麦叶片气孔形态与土壤湿度的关系,结果表明:土壤干旱使气孔密度增加,上表皮的密度大于下表皮;气孔开张度随土壤湿度下降而变小;气孔导度与土壤湿度呈指数相关,随土壤含水量的下降呈指数减少。随土壤湿度的改变小麦的生理过程也发生改变,蒸腾速率随土壤湿度下降呈指数减小。并研究了土壤干旱对叶绿素超微结构的影响及与脯氨酸的关系。  相似文献   

14.
通过 1 997~ 1 999年在河北省衡水半干旱地区对冬小麦进行耕作、覆盖、底墒和补水灌溉等综合应变防御技术田间试验研究 ,在拔节期以有限水分胁迫效益指标 ( 55% )为依据 ,制定出脯氨酸含量大于 0 .30 g/ 1 0 0 g为小麦受旱的生化指标 ;选取土壤水分、叶面积系数、生物量、补水量、水分利用效率等小麦受旱程度的特征量进行综合分析 ,得出了平均每实施一项抗旱技术 ,可使小麦增产 4.3% ,以深松 覆盖 足墒综合配套技术增产效果最明显 ,可增产 2 7.0 % ,水分利用效率达到 2 0 .1 kg/ ( mm· hm2 ) ,其次是深松 覆盖 欠墒综合配套技术  相似文献   

15.
水分胁迫对华北平原冬小麦地上部分及产量的影响   总被引:1,自引:0,他引:1  
以“济麦-22”为供试品种,利用中国气象局固城生态环境与农业气象试验站大型根系观测系统,研究冬小麦在重度干旱胁迫(≤40.0%)、轻中度干旱胁迫(40.1%-55.0%)和适宜(55.1%-80.0%)3种水分胁迫条件下地上部分对水分胁迫的响应,以探索水分胁迫对华北平原冬小麦产量的影响,分析不同水分胁迫对冬小麦产量的影响程度。结果表明:华北平原冬小麦在轻中度干旱胁迫和重度干旱胁迫下,小麦全生育期的天数缩短,株高、叶面积及灌浆速率均呈不同程度的减少。3种水分胁迫的株高增长量为适宜>轻中度胁迫>重度胁迫,灌浆速率为适宜>轻中度胁迫>重度胁迫。土壤水分胁迫引起冬小麦物质分配更多地向支持生长的茎秆转移,在生长发育过程中受到水分胁迫,小麦产量将降低,重度胁迫条件下小麦产量为适宜水分条件的69%。  相似文献   

16.
微根窗成像技术推动了植物根系表型研究,但是根系长度和直径仍然需要人眼识别再绘制轨迹,消耗大量的人力和时间。为了解决这一难题,本研究将U-Net语义分割技术引入到植物根系图像识别中,研发了基于机器学习的iRoot-V02根系自动识别软件。采用iRoot-V02软件识别微根窗法获得的植物根系成像图片的根长、直径、投影面积、根尖数等参数。结果表明: iRoot-V02软件批处理600 dpi图片的速度为每张26.6 S; 获取根系的骨架信息、总根长与人眼识别结果基本一致; 按直径每0.1 mm为一级,获得不同直径的根长,与人眼识别结果的根长决定系数大于0.76;精确捕捉到根系生长旺盛期不同直径根长的变化; 分析了300 dpi和600 dpi两种分辨率根系图片的参数,两种分辨率结果具有高相关性,因此可建立低分辨率根系参数和高分辨率根系参数之间的关系方程,采用低分辨率拍摄根系图像,通过方程转化成更准确的根系参数,减轻工作量。用iRoot-V02软件的根系生长信息近似于人眼识别,相比人眼识别在大批量根系图像智能识别、自动化、快速目标检测方面具有巨大优势。  相似文献   

17.
干旱综合防御技术对小麦生长和产量的影响   总被引:1,自引:0,他引:1  
1998年10月至2000年6月进行的冬小麦大干旱综合防御技术集成试验表明,充足的底墒水、深耕、秸杆翻压还田、秸杆覆盖、喷施防旱剂和有限灌溉等是防御冬小麦干旱、减少土壤水分无效消耗的有效措施,对小麦叶面积、干物重和产量形成有明显的影响。综合运用以上措施,可使冬小麦叶面积、干物重和产量形成有明显的影响。综合运用以上措施,可使冬小麦增产10%以上,水分利用效率提高30%以上,每公顷增收节支500-800元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号