首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a 2.2-μm polarization image of the nuclear regions of Cygnus A. The degree of polarization in the central 1 arcsec is (4.1±0.50) per cent, at a position angle of (23.6±3.6)°, approximately perpendicular to the axis of the radio jet.
Modelling of the results suggests that at this wavelength the polarization along the line of sight to the central source is most likely produced by dichroism, through an A v∼40 mag, with the polarization in surrounding regions produced by scattering. For this model, the K -band luminosity of the central source is calculated to be ∼2×1044 erg s−1.  相似文献   

2.
We report the first detection, with Chandra , of X-ray emission from the jet of the powerful narrow-line radio galaxy 3C 346. X-rays are detected from the bright radio and optical knot at which the jet apparently bends by approximately 70°. The Chandra observation also reveals a bright galaxy-scale atmosphere within the previously known cluster and provides a good X-ray spectrum for the bright core of 3C 346. The X-ray emission from the knot is synchrotron radiation, as seen in lower-power sources. In common with these sources, there is evidence of morphological differences between the radio/optical and X-ray structures, and the spectrum is inconsistent with a one-component continuous-injection model. We suggest that the X-ray-bright knot is associated with a strong oblique shock in a moderately relativistic, light jet, at ∼ 20° to the line of sight, and that this shock is caused by the jet interacting with the wake in the cluster medium behind the companion galaxy of 3C 346. The general jet curvature can result from pressure gradients in the cluster atmosphere.  相似文献   

3.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

4.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

5.
We present Chandra , Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the nucleus of NGC 4696, a giant elliptical in the Centaurus cluster of galaxies. Like M87 in the Virgo cluster, PKS 1246−410 in the Centaurus cluster is a nearby example of a radio galaxy in a dense cluster environment. In analysing the new X-ray data, we have found a compact X-ray feature coincident with the optical and radio core. While nuclear emission from the X-ray source is expected, its luminosity is low,  <1040 erg s−1  . We estimate the Bondi accretion radius to be 30 pc and the accretion rate to be  0.01 M yr−1  , which under the canonical radiative efficiency of 10 per cent would overproduce by 3.5 orders of magnitude the radiative luminosity. Much of this energy can be directed into the kinetic energy of the jet, which over time inflates the observed cavities seen in the thermal gas. The VLBA observations reveal a weak nucleus and a broad, one-sided jet extending over 25 pc in position angle −150°. This jet is deflected on the kiloparsec-scale to a more east–west orientation (position angle of −80°).  相似文献   

6.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

7.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metallicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-infrared energy distribution of WD 1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be   T eff= 15 739+197−196 K  and  log  g = 8.46+0.03−0.02  . We set tight limits on the mass of a putative cool companion,   M ≳ 0.036 M  (spatially unresolved) and   M ≳ 0.034 M  (spatially resolved and   a ≲ 2500 au  ). Based on the predictions of CO core, thick H layer evolutionary models we determine the mass and cooling time of WD 1216+260 to be   M WD= 0.90 ± 0.04 M  and  τcool= 363+46−41 Myr  , respectively. For an adopted cluster age of  τ= 500 ± 100 Myr  we infer the mass of its progenitor star to be   M init= 4.77+5.37−0.97 M  . We briefly discuss this result in the context of the form of the stellar initial mass–final mass relation.  相似文献   

8.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

9.
Using results from structural analysis of a sample of nearly 1000 local galaxies from the Sloan Digital Sky Survey, we estimate how the mass in central black holes is distributed amongst elliptical galaxies, classical bulges and pseudo-bulges, and investigate the relation between their stellar masses and central stellar velocity dispersion σ. Assuming a single relation between elliptical galaxy/bulge mass, M Bulge, and central black hole mass, M BH, we find that  55+8−4  per cent of the mass in black holes in the local universe is in the centres of elliptical galaxies,  41+4−2  per cent in classical bulges and  4+0.9−0.4  per cent in pseudo-bulges. We find that ellipticals, classical bulges and pseudo-bulges follow different relations between their stellar masses and σ, and the most significant offset occurs for pseudo-bulges in barred galaxies. This structural dissimilarity leads to discrepant black hole masses if single   M BH– M Bulge  and   M BH–σ  relations are used. Adopting relations from the literature, we find that the   M BH–σ  relation yields an estimate of the total mass density in black holes that is roughly 55 per cent larger than if the   M BH– M Bulge  relation is used.  相似文献   

10.
We examine the optical emission-line properties of brightest cluster galaxies (BCGs) selected from two large, homogeneous data sets. The first is the X-ray selected National Optical Astronomy Observatory Fundamental Plane Survey (NFPS), and the second is the C4 catalogue of optically selected clusters built from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3). Our goal is to better understand the optical line emission in BCGs with respect to properties of the galaxy and the host cluster. Throughout the analysis we compare the line emission of the BCGs to that of a control sample made of the other bright galaxies near the cluster centre. Overall, both the NFPS and SDSS show a modest fraction of BCGs with emission lines (∼15 per cent). No trend in the fraction of emitting BCGs as a function of galaxy mass or cluster velocity dispersion is found. However, we find that, for those BCGs found in cooling flow clusters,  71+9−14  have optical emission. Furthermore, if we consider only BCGs within 50 kpc of the X-ray centre of a cooling flow cluster, the emission-line fraction rises further to  100+0−15  per cent. Excluding the cooling flow clusters, only ∼10 per cent of BCGs are line emitting, comparable to the control sample of galaxies. We show that the physical origin of the emission-line activity varies: in some cases it has LINER-like line ratios, whereas in others it is a composite of star-formation and LINER-like activity. We conclude that the presence of emission lines in BCGs is directly related to the cooling of X-ray gas at the cluster centre.  相似文献   

11.
This paper introduces a new program to find high-redshift radio galaxies in the Southern hemisphere through ultrasteep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices α843408≤−1.0 ( S ν∝να) and flux densities S 408≥ 200 mJy in a region of 0.35 sr, chosen by cross-correlating the revised 408 MHz Molonglo Reference Catalogue, the 843 MHz Sydney University Molonglo Sky Survey and the 1400 MHz NRAO VLA Sky Survey in the overlap region −40° < δ < −30°. We present Australia Telescope Compact Array (ATCA) high-resolution 1384 and 2368 MHz radio data for each source, which we use to analyse the morphological, spectral index and polarization properties of our sample. We find that 85 per cent of the sources have observed-frame spectral energy distributions that are straight over the frequency range 408–2368 MHz, and that, on average, sources with smaller angular sizes have slightly steeper spectral indices and lower fractional linear polarization. Fractional polarization is anticorrelated with flux density at both 1400 and 2368 MHz. We also use the ATCA data to determine observed-frame Faraday rotation measures for half of the sample.  相似文献   

12.
We study the polarization properties of relativistic reconfinement shocks with chaotic magnetic fields. Using our hydrodynamical model of their structure, we calculate synthetic polarization maps, longitudinal polarization profiles and discuss the spatially averaged polarization degree as a function of jet half-opening angle  Θ j   , jet Lorentz factor  Γ j   and observer inclination angle to the jet axis  θobs  . We find that for  θobs≲Θ j   the wave electric vectors are parallel in the vicinity of the structure ends and perpendicular in between, while for  θobs > Θ j   the polarization can only be perpendicular. The spatially averaged polarization degree does not exceed 30 per cent. Parallel average polarization, with polarization degrees lower than 10 per cent, has been found for  θobs < Θ j   under the condition  Γ j Θ j > 1  . As earlier works predicted the parallel polarization from relativistic conical shocks, we explain our results by discussing conical shocks with divergent upstream flow.  相似文献   

13.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

14.
The Australia Telescope 20-GHz (AT20G) Survey is a blind survey of the whole southern sky at 20 GHz (with follow-up observations at 4.8 and 8.6 GHz) carried out with the Australia Telescope Compact Array from 2004 to 2007.
The Bright Source Sample (BSS) is a complete flux-limited subsample of the AT20G Survey catalogue comprising 320 extragalactic     ) radio sources south of  δ=−15°  with      Jy. Of these, 218 have near simultaneous observations at 8 and 5 GHz.
In this paper we present an analysis of radio spectral properties in total intensity and polarization, size, optical identifications and redshift distribution of the BSS sources. The analysis of the spectral behaviour shows spectral curvature in most sources with spectral steepening that increases at higher frequencies (the median spectral index α, assuming   S ∝να  , decreases from  α8.64.8= 0.11  between 4.8 and 8.6 GHz to  α208.6=−0.16  between 8.6 and 20 GHz), even if the sample is dominated by flat spectra sources (85 per cent of the sample has  α208.6 > −0.5)  . The almost simultaneous spectra in total intensity and polarization allowed us a comparison of the polarized and total intensity spectra: polarized fraction slightly increases with frequency, but the shapes of the spectra have little correlation. Optical identifications provided an estimation of redshift for 186 sources with a median value of 1.20 and 0.13, respectively, for QSO and galaxies.  相似文献   

15.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

16.
We present results from XMM–Newton observations of the obscured quasi-stellar object 1SAX J1218.9+2958. We find that the previously reported optical and soft X-ray counterpart positions are incorrect. However, we confirm the spectroscopic redshift of 0.176. The optical counterpart has a K magnitude of 13.5 and an R – K colour of 5.0 and is therefore a bright extremely red object. The X-ray spectrum is well described by a power law  (Γ= 2.0 ± 0.2)  absorbed by an intrinsic neutral column density of  8.2+1.1−0.7× 1022 cm−2  . We find that any scattered emission contributes at most 0.5 per cent to the total X-ray flux. From the optical/near-infrared colour we estimate that the active nucleus must contribute at least 50 per cent of the total flux in the K band and that the ratio of extinction to X-ray absorption is 0.1–0.7 times that expected from a Galactic dust–gas ratio and extinction curve. If 1SAX J1218.9+2958 were 100 times less luminous it would be indistinguishable from the population responsible for most of the 2–10 keV X-ray background. This has important implications for the optical/infrared properties of faint absorbed X-ray sources.  相似文献   

17.
We investigate the relationship between the optical and radio emission of active galactic nuclei (AGN) by analysing optical and 15+22+43 GHz Very Long Baseline Array (VLBA) polarization observations simultaneous to within a day for 11 BL Lacertae (BL Lac) objects and the blazar 3C279. We have determined and corrected for the Faraday rotation measures in the very long baseline interferometry (VLBI) cores, enabling us to compare the intrinsic (zero-wavelength) VLBI-core polarization angles and the optical polarization angles χopt. A clear alignment between these two angles emerges in the transition toward higher radio frequencies, and a prominent peak at 0° is visible in the distribution of |χopt−χ43 GHz|. This correlation implies that the magnetic-field orientations in the regions giving rise to the optical and radio polarization are the same, and can be easily understood if the radio and optical polarization are roughly cospatial. It is difficult to rule out the possibility that they arise in different regions in a straight jet with a uniform magnetic-field structure, but this seems less likely, since the VLBI jets of AGN are often bent on parsec-scales. This may suggest that much or all of the strong optical polarization in these sources arises in the inner radio jets, possibly associated with the formation and emergence of compact new VLBI components.  相似文献   

18.
We present photometric and spectroscopic data of the Type II-P supernova (SN II-P) 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first Type II supernova (SN) to have a directly confirmed red supergiant (RSG) progenitor. We compare SN 2003gd to SN 1999em, a similar SN II-P, and estimate an explosion date of 2003 March 18. We determine a reddening towards the SN of   E ( B − V ) = 0.14 ± 0.06  , using three different methods. We also calculate three new distances to M74 of  9.6 ± 2.8, 7.7 ± 1.7  and  9.6 ± 2.2 Mpc  . The former was estimated using the standard candle method (SCM), for Type II supernovae (SNe II), and the latter two using the brightest supergiants method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of  9.3 ± 1.8 Mpc  . SN 2003gd was found to have a lower tail luminosity compared with other normal Type II-P supernovae (SNe II-P) bringing into question the nature of this SN. We present a discussion concluding that this is a normal SN II-P, which is consistent with the observed progenitor mass of  8+4−2 M  .  相似文献   

19.
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of   cz = 32 214 ± 83  km s−1 ( z = 0.10 738 ± 0.00 027)  , with a velocity dispersion typical of rich, massive clusters of  σ cz = 880+66−54  . We find that the cD galaxy has a peculiar velocity of  683 ± 96  km s−1  in the cluster rest frame – some 7σ away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.  相似文献   

20.
We find the nine bulk flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ in linear theory using these moments. A likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise  σ*  from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large-scale flows. We found that we can constrain the power spectrum shape parameter to be  Γ= 0.15+0.18−0.08  for the groups catalogue and  Γ= 0.09+0.04−0.04  for the field galaxy catalogue in fair agreement with the value from Wilkinson Microwave Anisotropy Probe .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号