首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

2.
The Songshugang granite, hidden in the Sinian metasedimentary stratum, is a highly evolved rare-element granite in northeastern Jiangxi province, South China. The samples were systematically taken from the CK-102 drill hole at the depth of 171–423 m. Four types of rocks were divided from the bottom upwards: topaz albite granite as the main body, greisen nodules, topaz K-feldspar granite and pegmatite layer. Electron-microprobe study reveals that the rare-element minerals of the Songshugang granite are very different from those of other rare-element granites. Mn# [Mn/(Fe + Mn)] and Ta# [Ta/(Nb + Ta)] of columbite-group minerals and Hf# [Hf/(Zr + Hf)] of zircon are nearly constant within each type of rocks. However, back-scattered electron imaging revealed that Nb–Ta oxides and zircon of the Songshugang granite, especially those of topaz albite granite, topaz K-feldspar granite and greisen, are commonly characterized by a specific two-stage texture on the crystal scale. The early-stage Nb–Ta oxide is simply subhedral-shaped columbite-(Fe) (CGM-I) with low Mn# (0.16–0.37) and Ta# (0.05–0.29). Columbite-(Fe) is penetrated by the later-stage tantalite veinlets (CGM-II) or surrounded by complex Nb–Ta–Sn–W mineral assemblages, including tantalite-(Fe), wodginite (sl), cassiterite, and ferberite. Tantalite has wide range of Mn# values (0.15–0.88) from Fe-dominance to Mn-dominance. Wodginite with Ta>Nb has large variable concentrations of W, Sn and Ti. Cassiterite and ferberite are all enriched in Nb and Ta (Nb2O5 + Ta2O5 up to 20.12 wt.% and 31.42 wt.%, respectively), with high Ta# (>0.5). Similar to Nb–Ta oxides and Nb–Ta–Sn–W mineral assemblages, the early-stage zircon is commonly included by the later-stage zircon with sharply boundary. They have contrasting Hf contents, and HfO2 of the later-stage zircon is up to 28.13 wt.%. Petrographic features indicate that the early-stage of columbite and zircon were formed in magmatic environment. However, the later-stage of rare-element minerals were influenced by fluxes-enriched fluids. Tantalite, together with wodginite, cassiterite, and ferberite implies a Ta-dominant media. An interstitial fluid-rich melt enriched in Ta and flux at the magmatic–hydrothermal transitional stage is currently a favored model for explaining the later-stage of rare-element mineralization.  相似文献   

3.
Whole rock major and trace element and Sr-, Nd- and Hf-isotope data, together with zircon U-Pb, Hf- and O-isotope data, are reported for the Nb-Ta ore bearing granites from the Lingshan pluton in the Southeastern China, in order to trace their petrogenesis and related Nb-Ta mineralization. The Lingshan pluton contains hornblende-bearing biotite granite in the core and biotite granite, albite granite and pegmatite at the rim. In addition, numerous mafic microgranular enclaves occur in the Lingshan granites. Zircon SIMS U-Pb dating gives consistent crystallization ages of ca. 132 Ma for the Lingshan granitoids and enclaves, consistent with the Nb-Ta mineralization age of ∼132 Ma, indicating that mafic and felsic magmatism and Nb-Ta mineralization are coeval. The biotite granites contain hornblende, and are metaluminous to weakly peraluminous, with high initial 87Sr/86Sr ratios of 0.7071–0.7219, negative εNd(t) value of −5.9 to −0.3, εHf(t) values of −3.63 to −0.32 for whole rocks, high δ18O values and negative εHf(t) values for zircons, and ancient Hf and Nd model ages of 1.41–0.95 Ga and 1.23–1.04 Ga, indicating that they are I-type granites and were derived from partial melting of ancient lower crustal materials. They have variable mineral components and geochemical features, corresponding extensive fractionation of hornblende, biotite and feldspar, with minor fractionation of apatite. Existence of mafic microgranular enclaves in the biotite granites suggests a magma mixing/mingling process for the origin of the Lingshan granitoids, and mantle-derived mafic magmas provided the heat for felsic magma generation. In contrast, the Nb-Ta mineralized albite granites and pegmatites have distinct mineral components and geochemical features, which show that they are highly-fractionated granites with extensive melt and F-rich fluid interaction in the generation of these rocks. The fluoride-rich fluids induce the enrichment in Nb and Ta in the highly evolved melts. Therefore, we conclude that the Nb-Ta mineralization is the result of hydrothermal process rather than crystal fractionation in the Lingshan pluton, which provides a case to identify magmatic and hydrothermal processes and evaluate their relative importance as ore-forming processes.  相似文献   

4.
The Dapingzhang volcanogenic Cu–Pb–Zn sulfide deposit is located in the Lancangjiang tectonic zone within the Sanjiang region, Yunnan province of southwestern China. The deposit occurs within a felsic volcanic dome belonging to a mid-Silurian volcanic belt stretching for more than 100 km from Dapingzhang to Sandashan. The mineralized volcanic rocks are predominantly keratophyre and quartz keratophyre with subordinate spilite. The Dapingzhang deposit is characterized by well-developed vertical zonation with stockwork ores in the bottom, disseminated sulfide ores in the middle, and massive sulfide ores in the top, overlain by a thin layer of chemical sedimentary exhalative rocks (chert and barite). The Re–Os age of the pyrites from the deposit is 417 ± 23 Ma, indistinguishable from the age of the associated felsic volcanic rocks. The associated felsic volcanic rocks are characterized by negative Nb–Ta anomalies and positive εNd(t) values (+ 4.4–+6.5), similar to the coeval calc-alkaline volcanic rocks in the region. This observation supports the interpretation that the felsic volcanic rocks associated with the Dapingzhang deposit are the derivatives of arc basaltic magma by extensive fractional crystallization. The δ34S values of the sulfides from the deposit vary from − 1.24 to + 4.32‰, indicating a predominantly magmatic source for the sulfur. The sulfides are also characterized by homogeneous and relatively low radiogenic Pb isotope compositions (206Pb/204Pb = 18.310–18.656, 207Pb/204Pb = 15.489–15.643 and 208Pb/204Pb = 37.811–38.662), similar to the Pb isotopic compositions of the associated volcanic rocks. The Pb isotopic data indicate that mantle-derived Pb is more prevalent than crust-derived Pb in the deposit. The S–Pb isotopic data indicate that the important ore-forming materials were mainly derived from the associated volcanic rocks. The δ13CPDB and δ18OSMOW values of the associated hydrothermal calcite crystals vary from − 2.3‰ to + 0.27‰ and from + 14.6 to + 24.4‰, respectively. These values are between the mantle and marine carbonate values. The narrow range of the δ13CPDB values for the calcite indicates that carbon-bearing species in the hydrothermal fluids were primarily derived from marine carbonates. The δ18O values for the hydrothermal fluids, calculated from the measured values for quartz, are between − 2.1‰ and + 3.5‰. The corresponding δD values for the fluids range from − 59‰ to − 84‰. The O–H isotopic data indicate mixing between magmatic fluids and seawater in the ore-forming hydrothermal system. Similar to a typical volcanogenic massive sulfide (VMS) deposit, the ore-forming fluids contained both magmatic fluids and heated seawater; the ore metals and regents were derived from the underlying magma as well as felsic country rocks.  相似文献   

5.
The Kanggur gold deposit is located in the southern margin of the Central Asia Orogenic Belt and in the western segment of the Kanggur–Huangshan ductile shear belt in Eastern Tianshan, northwestern China. The orebodies of this deposit are hosted in the Lower Carboniferous volcanic rocks of the Aqishan Formation and mainly consist of andesite, dacite and pyroclastic rocks. The SHRIMP zircon U–Pb age data of the andesite indicate that the volcanism in the Kanggur area might have occurred at ca. 339 Ma in the Early Carboniferous, and that the mineralization age of the Kanggur gold deposit was later than the age of volcanic rocks in the area. Geochemically, the andesite rocks of the Aqishan Formation belong to low-tholeiite and calc-alkaline series and display relative depletions in high field strength elements (HFSEs; i.e. Nb, Ta and Ti). The δ18Ow and δDw values vary from − 9.1‰ to + 3.8‰ and − 66.0‰ to − 33.9‰, respectively, indicating that the ore-forming fluids were mixtures of metamorphic and meteoric waters. The δ30Si values of 13 quartz samples range from − 0.3‰ to + 0.1‰ with an average of − 0.15‰, and the δ34S values of 18 sulphide samples range from − 0.9‰ to + 2.2‰ with an average of + 0.54‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 10 sulphide samples range from 18.166 to 18.880, 15.553 to 15.635 and 38.050 to 38.813, respectively, showing similarities to orogenic Pb; these values are consistent with those of the andesite from the Kanggur area, suggesting a common lead source. All of the silicon, sulphur and lead isotopic systems indicate that the ore-forming fluids and materials were mainly derived from the Aqishan Formation, and that the host volcanic rocks of the Aqishan Formation probably played a significant role in the Kanggur gold mineralization. Integrating the data obtained from studies on geology, geochronology, petro-geochemistry and H–O–Si–S–Pb isotope systematics, we suggest that the Kanggur gold deposit is an orogenic-type deposit formed in Eastern Tianshan orogenic belt during the Permian post-collisional tectonism.  相似文献   

6.
The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.  相似文献   

7.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

8.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

9.
Lithium isotope signatures of whole rock pegmatite samples and mineral separates from the rare element-bearing Little Nahanni Pegmatite Group, NWT, and whole rock samples from nearby granitic intrusions were measured. Correlation of the Li isotopic values from the pegmatite dikes with whole rock trace element geochemistry, mineralogy and primary textural evidence reflect mechanisms of Li isotopic fractionation during pegmatite formation. The heavier δ7Li signatures within the broad range measured from whole rock LNPG samples (? 0.94‰ to + 11.36‰) are related to the consolidation of the final ~ 15% melt fraction of a volatile-rich peraluminous magma in the late stages of magmatic fractionation. Rock-forming minerals (quartz, albite, spodumene and mica) display δ7Li signatures that indicate consolidation of the dikes under variable, non-equilibrium conditions. Lithium isotope signatures of relatively cool, highly evolved peraluminous magmas reflect the build-up of fluxes (e.g., H2O and F) and provide a qualitative assessment of the state of mineral/melt chemical equilibrium.  相似文献   

10.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

11.
Xiaolonghe is a poorly studied greisen-type tin deposit that is hosted by biotite granite in the western Yunnan tin belt. The mineralisation-related metaluminous and weak peraluminous granite is characterised by high Si, Al and K and low Mg, Fe and Ca, with an average A/CNK of 1.02. The granite is enriched in LILEs (K and Rb), LREEs and HFSEs (Zr, Hf, Th, U and Ce) and depleted in Ba, Nb, Sr, P, and Ti, with zircon εHf(t) =  10.8 to − 7.5 (TDM2 = 1.61–1.82 Ga). These characteristics indicate that the magma was generated by the partial melting of a thickened ancient crust. LA-ICP-MS U–Pb dating of igneous zircon and hydrothermal cassiterite yield ages of 71.4 ± 0.4 Ma and 71.6 ± 4.8 Ma, respectively. The igneous biotite and hydrothermal muscovite samples show Ar–Ar plateau ages of 72.3 ± 0.4 Ma and 70.6 ± 0.2 Ma, respectively. The close temporal relationship between the igneous emplacement and hydrothermal activity suggests that the tin mineralisation was closely linked to the igneous emplacement. The δ18O and δD values for the deposit range from + 3.11‰ to − 4.5‰ and from − 127.3‰ to − 94.7‰, respectively. The hydrothermal calcite C and O isotopic data show a wide range of δ13CPDB values from − 5.7‰ to − 4.4‰, and the δ18OSMOW values range from + 1.4‰ to + 11.2‰. The δ34SV-CDT data range from + 4.8‰ to + 8.9‰ for pyrite, and the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from 18.708 to 18.760, from 15.728 to 15.754 and from 39.237 to 39.341, respectively. The stable isotopic (C–H–O–S–Pb) compositions are all similar to those of magmatic and mantle-derived fluids, which indicate that the ore-forming fluids and materials were mainly derived from magmatic sources that were accompanied by meteoric water. The tin mineralisation in the Xiaolonghe district was closely associated with the Late Cretaceous crustal-melting S-type granites that formed during the subduction of the Neo-Tethys oceanic lithosphere. Combined with the tin deposits in the Southeast Asian tin belt, Tengchong block and Central Lhasa, we interpreted that a giant intermittent tin mineralisation belt should be present along the Asian Neo-Tethys margin.  相似文献   

12.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

13.
The Laoshankou Fe–Cu–Au deposit is located at the northern margin of Junggar Terrane, Xinjiang, China. This deposit is hosted in Middle Devonian andesitic volcanic breccias, basalts, and conglomerate-bearing basaltic volcanic breccias of the Beitashan Formation. Veined and lenticular Fe–Cu–Au orebodies are spatially and temporally related to diorite porphyries in the ore district. Wall–rock alteration is dominated by skarn (epidote, chlorite, garnet, diopside, actinolite, and tremolite), with K–feldspar, carbonate, albite, sericite, and minor quartz. On the basis of field evidence and petrographic observations, three stages of mineralization can be distinguished: (1) a prograde skarn stage; (2) a retrograde stage associated with the development of Fe mineralization; and (3) a quartz–sulfide–carbonate stage associated with Cu–Au mineralization. Electron microprobe analysis shows that garnets and pyroxenes are andradite and diopside-dominated, respectively. Fluid inclusions in garnet yield homogenization temperatures (Th) of 205–588 °C, and salinities of 8.95–17.96 wt.% NaCl equiv. In comparison, fluid inclusions in epidote and calcite yield Th of 212–498 and 150–380 °C, and salinities of 7.02–27.04 and 13.4–18.47 wt.% NaCl equiv., respectively. Garnets yield values of 6.4‰ to 8.9‰ δ18Ofluid, whereas calcites yield values of − 2.4‰ and 4.2‰ δ18Ofluid, and − 0.9‰ to 2.4‰ δ13CPDB, indicating that the ore-forming fluids were dominantly magmatic fluids in the early stage and meteoric water in the late stage. The δ34S values of sulfides range from − 2.6‰ to 5.4‰, indicating that the sulfur in the deposit was probably derived from deep-seated magmas. The diorite porphyry yields LA–MC–ICP–MS zircon U–Pb age of 379.7 ± 3.0 Ma, whereas molybdenites give Re–Os weighted mean age of 383.2 ± 4.5 Ma (MSWD = 0.06). These ages suggest that the mineralization-related diorite porphyry was emplaced during the Late Devonian, coincident with the timing of mineralization within the Laoshankou Fe–Cu–Au deposit. The geological and geochemical evidence presented here suggest that the Laoshankou Fe–Cu–Au deposit is a skarn deposit.  相似文献   

14.
The Zhibula Cu skarn deposit contains 0.32 Mt. Cu metal with an average grade of 1.64% and is located in the Gangdese porphyry copper belt in southern Tibet. The deposit is a typical metasomatic skarn that is related to the interaction of magmatic–hydrothermal fluids and calcareous host rock. Stratiform skarn orebodies occur at the contact between tuff and marble in the Lower Jurassic Yeba Formation. Alteration zones generally grade from a fresh tuff to a garnet-bearing tuff, a garnet pyroxene skarn, and finally to a wollastonite marble. Minor endoskarn alteration zonations are also observed in the causative intrusion, which grade from a fresh granodiorite to a weakly chlorite-altered granodiorite, a green diopside-bearing granodiorite, and to a dark red-brown garnet-bearing granodiorite. Prograde minerals, which were identified by electron probe microanalysis include andradite–grossularite of various colors (e.g., red, green, and yellow) and green diopside. Retrograde metamorphic minerals overprint the prograde skarn, and are mainly composed of epidote, quartz, and chlorite. The ore minerals consist of chalcopyrite and bornite, followed by magnetite, molybdenite, pyrite, pyrrhotite, galena, and sphalerite. Three types of fluid inclusions are recognized in the Zhibula deposit, including liquid-rich two-phase inclusions (type L), vapor-rich two-phase inclusions (type V), and daughter mineral-bearing three-phase inclusions (type S). As the skarn formation evolved from prograde (stage I) to early retrograde (stage II) and later retrograde (stage III), the ore-forming fluids correspondingly evolved from high temperature (405–667 °C), high salinity (up to 44.0 wt.% NaCl equiv.), and high pressure (500–600 bar) to low-moderate temperature (194–420 °C), moderate-high salinity (10.1–18.3 and 30.0–44.2 wt.% NaCl equiv.), and low-moderate pressure (250–350 bar). Isotopic data of δ34S (− 0.1‰ to − 6.8‰, estimated δ34Sfluids =  0.7‰), δDH2O (− 91‰ to − 159‰), and δ18OH2O (1.5‰ to 9.2‰) suggest that the ore-forming fluid and material came from magmatic–hydrothermal fluids that were associated with Miocene Zhibula intrusions. Fluid immiscibility likely occurred at the stage I and stage II during the formation of the skarn and mineralization. Fluid boiling occurred during the stage III, which is the most important Cu deposition mechanism for the Zhibula deposit.  相似文献   

15.
The Qiangma gold deposit is hosted in the > 1.9 Ga Taihua Supergroup metamorphic rocks in the Xiaoqinling terrane, Qinling Orogen, on the southern margin of the North China Craton. The mineralization can be divided as follows: quartz-pyrite veins early, quartz-polymetallic sulfide veinlets middle, and carbonate-quartz veinlets late stages, with gold being mainly introduced in the middle stage. Three types of fluid inclusions were identified based on petrography and laser Raman spectroscopy, i.e., pure carbonic, carbonic-aqueous (CO2–H2O) and aqueous inclusions.The early-stage quartz contains pure carbonic and CO2–H2O inclusions with salinities up to 12.7 wt.% NaCl equiv., bulk densities of 0.67 to 0.86 g/cm3, and homogenization temperatures of 280−365 °C. The early-stage is related to H2O–CO2 ± N2 ± CH4 fluids with isotopic signatures consistent with a metamorphic origin (δ18Owater = 3.1 to 5.2‰, δD =  37 to − 73‰). The middle-stage quartz contains all three types of fluid inclusions, of which the CO2–H2O and aqueous inclusions yield homogenization temperatures of 249−346 °C and 230−345 °C, respectively. The CO2–H2O inclusions have salinities up to 10.9 wt.% NaCl equiv. and bulk densities of 0.70 to 0.98 g/cm3, with vapor bubbles composed of CO2 and N2. The isotopic ratios (δ18Owater = 2.2 to 3.6‰, δD =  47 to − 79‰) suggest that the middle-stage fluids were mixed by metamorphic and meteoric fluids. In the late-stage quartz only the aqueous inclusions are observed, which have low salinities (0.9−9.9 wt.% NaCl equiv.) and low homogenization temperatures (145−223 °C). The isotopic composition (δ18Owater =  1.9 to 0.5‰, δD =  55 to − 66‰) indicates the late-stage fluids were mainly meteoric water.Trapping pressures estimated from CO2–H2O inclusions are 100−285 MPa for the middle stage, suggesting that gold mineralization mainly occurred at depths of 10 km. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, and fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Qiangma gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic−Early Cretaceous continental collision between the North China and Yangtze cratons.  相似文献   

16.
The Xiaguan Ag–Pb–Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250–320 °C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+–Cl-type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280–320 MPa in the early mineralization stage to ca. 90–92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag–Pb–Zn orefield belongs to orogenic-type systems.The δ18OH2O values change from the Early (E)-stage (7.8–10.8 ‰), through Middle (M)-stage (6.0–9.4 ‰) to Late (L)-stage (− 1.5–3.3 ‰), with δD values changing from E-stage − 95 to − 46 ‰, through M-stage − 82 to − 70 ‰ to L-stage − 95 to − 82 ‰. δ13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 ‰ and 0.9 ‰ (average: 0.3 ‰); δ13CCO2 values of L-stage FIs are − 0.2–0.1 ‰ in quartz and − 6.8 ‰ to − 3.5 ‰ in calcite. The H–O–C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution.Sulfur (δ34S = 1.9–8.1 ‰) and lead isotopic compositions (206Pb/204Pb = 18.202–18.446, 207Pb/204Pb = 15.567–15.773 and 208Pb/204Pb = 38.491–39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187  124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag–Pb–Zn orefield was formed in a continent–continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF).  相似文献   

17.
The Huijiabao gold district is one of the major producers for Carlin-type gold deposits in southwestern Guizhou Province, China, including Taipingdong, Zimudang, Shuiyindong, Bojitian and other gold deposits/occurrences. Petrographic observation, microthermometric study and Laser Raman spectroscopy were carried out on the fluid inclusions within representative minerals in various mineralization stages from these four gold deposits. Five types of fluid inclusions have been recognized in hydrothermal minerals of different ore-forming stages: aqueous inclusions, CO2 inclusions, CO2–H2O inclusions, hydrocarbon inclusions, and hydrocarbon–H2O inclusions. The ore-forming fluids are characterized by a H2O + CO2 + CH4 ± N2 system with medium to low temperature and low salinity. From early mineralization stage to later ones, the compositions of the ore-forming fluids experienced an evolution of H2O + NaCl  H2O + NaCl + CO2 + CH4 ± N2  H2O + NaCl ± CH4 ± CO2 with a slight decrease in homogenization temperature and salinity. The δ18O values of the main-stage quartz vary from 15.2‰ to 24.1‰, while the δDH2O and calculated δ18OH2O values of the ore-forming fluids range from −56.9 to −116.3‰ and from 2.12‰ to 12.7‰, respectively. The δ13CPDB and δ18OSMOW values of hydrothermal calcite change in the range of −9.1‰ to −0.5‰ and 11.1–23.2‰, respectively. Stable isotopic characteristics indicate that the ore-forming fluid was mainly composed of ore- and hydrocarbon-bearing basinal fluid. The dynamic fractionation of the sulfur in the diagenetic pyrite is controlled by bacterial reduction of marine sulfates. The hydrothermal sulfides and the diagenetic pyrite from the host rocks are very similar in their sulfur isotopic composition, suggesting that the sulfur in the ore-forming fluids was mainly derived from dissolution of diagenetic pyrite. The study of fluid inclusions indicates that immiscibility of H2O–NaCl–CO2 fluids took place during the main mineralization stage and caused the precipitation and enrichment of gold.  相似文献   

18.
《Lithos》2007,93(1-2):89-106
The Salvezines Massif in northern French Pyrénées has undergone extensive albitization. The massif consists of gneisses and a leucogranite hosted in Paleozoic sediments (schists and carbonates). The leucogranite was emplaced at the end of the Hercynian orogeny. The granite underwent monazite fractionation during magmatic stages, which induced lowering of REE and Th contents in the most evolved rocks. Hydrothermal alteration during late magmatic stages is also identified through the development of a tetrad effect in the REE patterns of the granite and through the fractionation of ratios like Zr/Hf out of the CHARAC (CHarge RAdius Controlled) range. The granite underwent partial to complete sub-solidus albitization. Progressive metasomatic overprint induced metasomatic replacement of feldspars into albite and dissolution of quartz (episyenitization) together with new albite formation. Hydrothermal muscovite with a sheaf-like structure sometimes crystallised in albitites. Inherited muscovites from magmatic stage and newly formed muscovites from albitites have distinct chemical compositions with the latter being much more phengitic. The initial peraluminous chemistry of the leucogranite was lost during albitization and composition evolved towards a pure albite one (A/CNK = 1). Albitization induced gains in Na and Al, and losses in Si and K. Leaching of REE and U is also identified during albitization, as well as the non-CHARAC behaviour of some elements. δ18O values of quartz and muscovite in albitized granites are in the magmatic range (about 12 and 9.5‰, respectively). Feldspars acquired high δ18O values during albitization (up to 15‰). Muscovite grains from albitites have higher δ18O values than inherited ones and tend towards isotopic equilibrium with albite. The albitizing fluids have interacted with high-δ18O rocks (probably local carbonates) prior to alter granite. Muscovites inherited from magmatic stages display very characteristic disturbed 39Ar–40Ar age spectra with saddle-shapes when a muscovite associated with albitization provided a plateau age at 117.5 Ma for this alteration event. Albitization in the Salvezines Massif just preceded the regional talc/chlorite hydrothermal mineralization. Both events might then represent two outward signs of a huge hydrothermal system at the time of the rotation of the Iberian plate around Europe. The North Pyrenean Metamorphism is identified by 39Ar–40Ar analyses at ca. or younger than 100 Ma.  相似文献   

19.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

20.
The Yindongpo gold deposit is located in the Weishancheng Au–Ag-dominated polymetallic ore belt in Tongbai Mountains, central China. The ore bodies are stratabound within carbonaceous quartz–sericite schists of the Neoproterozoic Waitoushan Group. The ore-forming process can be divided into three stages, represented by early barren quartz veins, middle polymetallic sulfide veinlets and late quartz–carbonate stockworks, with most ore minerals, such as pyrite, galena, native gold and electrum being formed in the middle stage. The average δ18Owater values changed from 9.7‰ in the early stage, through 4.9‰ in the middle stage, to − 5.9‰ in the late stage, with the δD values ranging between − 65‰ and − 84‰. The δ13CCO2 values of ore fluids are between − 3.7‰ and + 6.7‰, with an average of 1.1‰. The H–O–C isotope systematics indicate that the ore fluids forming the Yindongpo gold deposit were probably initially sourced from a process of metamorphic devolatilization, and with time gradually mixed with meteoric water. The δ34S values range from − 0.3‰ to + 5.2‰, with peaks ranging from + 1‰ to + 4‰. Fourteen sulfide samples yield 206Pb/204Pb values of 16.990–17.216, 207Pb/204Pb of 15.419–15.612 and208Pb/204Pb of 38.251–38.861. Both S and Pb isotope ratios are similar to those of the main lithologies of the Waitoushan Group, but differ from other lithologic units and granitic batholiths in the Tongbai area, which suggest that the ore metals and fluids originated from the Waitoushan Group. The available K–Ar and 40Ar/39Ar ages indicate that the ore-forming process mainly took place in the period of 176–140 Ma, during the transition from collisional compression to extension and after the closure of the oceanic seaway in the Qinling Orogen. The Yindongpo gold deposit is interpreted as a stratabound orogenic-style gold system formed during the transition phase from collisional compression to extension.The ore metals in the Waitoushan Group were extracted, transported and then accumulated in the carbonaceous sericite schist layer. The carbonaceous sericite schist layer, especially at the junction of collapsed anticline axis and fault structures, became the most favorable locus for the ore bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号