首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于多元地学大数据的三维成矿预测方法是开展深部找矿预测的新方法和新手段,也是当前成矿预测领域的研究热点之一。然而,大数据具有高维、混杂、非精确等特点,其分析处理过程面临多重不确定性。多元地学大数据整合是三维成矿预测的最终环节,其存在的不确定性将直接作用于预测结果,影响进一步的找矿应用和风险评估。本文以宁芜盆地钟姑矿田为例,从大数据思维出发,定量分析和度量预测要素和数学模型在数据整合过程中存在的不确定性及对三维成矿预测结果的影响。结果显示,断裂构造、背斜轴部等预测要素的不确定性对三维成矿预测结果的影响最为强烈;数据整合模型中,较之Logistic回归模型和证据权重模型,神经网络模型可能具有更高的不确定性程度。进一步工作可通过增强上述预测要素的可靠性和有效性、采用更多的数据整合模型进行更为全面的不确定性分析和评价,以获得更为可靠的三维成矿预测成果,从而降低成矿预测和找矿勘探风险。  相似文献   

2.
本文基于三维地质环境,综合白象山矿区积累的地质资料和物探成果,首先开展三维地质建模工作,详细刻画了白象山矿区的三维地质结构;在三维地质模型基础上,利用三维空间分析手段对三维控矿因素进行定量挖掘,提取了多种三维控矿因素;最后采用人工神经网络方法进行三维成矿定位预测。预测结果显示,人工神经网络三维成矿定位预测能很好的定位出已知矿体,同时显示,在已知矿体北部及东部的深边部具有较高的成矿概率,可作为开展进一步找矿勘探的靶区。因此,人工神经网络三维成矿定位预测对于白象山矿区的应用是有效的,可服务于新老矿区的深边部三维成矿定位预测,同时可为隐伏矿、盲矿的成矿预测和优选靶区提供定量、定位新的方法和途径。  相似文献   

3.
三维成矿定量预测系统设计与应用实例研究   总被引:2,自引:0,他引:2       下载免费PDF全文
隐伏矿体三维成矿定量预测是以多元地学大数据为基础的矿产预测新技术与方法。本文基于隐伏矿体三维成矿定量预测的实际需要及相关方法步骤,采用集成二次开发的方式,设计实现了一套可在三维环境下基于大数据开展定量化成矿预测工作的软件系统。本文阐述了系统的总体架构及开发方式,并对系统中各个功能模块的设计及实现过程进行详细阐述。系统融合了当前三维成矿定量预测研究的最新方法及成果,内含数据库管理、三维地球物理正演、三维空间分析以及三维预测评价等功能模块,能够对多元地学大数据进行集成和分析预测。为了验证系统的适用性和有效性,该系统被应用于长江中下游成矿带钟姑矿田三维成矿定量预测研究,相关成果表明系统的建立不但能够深化和发展三维成矿预测理论,也为新时期基于大数据的隐伏矿体找矿勘探工作提供了新方法及有力工具。  相似文献   

4.
西藏铁格隆南铜(金)矿床三维模型分析与深部预测   总被引:1,自引:1,他引:0  
于萍萍  陈建平  王勤 《岩石学报》2019,35(3):897-912
铁格隆南铜(金)矿床是近年来在班公湖-怒江成矿带西段多龙矿集区新发现的超大型Cu(Au-Ag)矿床。本文针对铁格隆南矿区深部找矿问题,以现代成矿地质理论和多元地学信息综合分析技术为支撑,以构建矿床找矿模型为指导,依托数据库技术、3S技术、三维建模与可视化技术及地质统计学理论与方法,开展基于矿产地质、地球物理、地球化学等成矿条件及找矿标志的三维地质实体建模与矿化异常三维空间重构,将铁格隆南矿床的预测评价研究拓展到三维空间,揭示了区内成矿地质特征、地球化学及地球物理异常表征,据此探讨了矿床的成因及矿体分布特征。并在此基础上,开展了矿区的地质-地球化学-地球物理综合信息分析与预测评价,以期减少单一信息多解性和成矿条件不确定性,为铁格隆南矿区深部找矿工作提供参考。研究结果表明:在地质找矿模型指导下,基于深部成矿空间三维结构重构基础上的三维地质、地球物理、地球化学异常信息提取与综合分析,可以有效的识别成矿地质体和矿致异常信息,实现深部矿产资源靶区空间定位预测,为深部找矿预测研究提供了新思路。综合分析结果显示铁格隆南矿床深部找矿潜力巨大。  相似文献   

5.
丁文祥  袁峰  李晓晖  孙维安  杨迪 《地质学报》2018,92(11):2301-2317
宁芜盆地是长江中下游成矿带中重要的金属矿集区之一,以中生代火山岩和铁矿床广泛发育为特征。近年来,随着找矿深度的不断加深,深部找矿的难度不断加大,成本越来越高,急需利用地球物理方法推断深部地质构造,为深部找矿提供依据,以减少勘探风险。为了解宁芜盆地南段钟姑矿田的深部构造、岩体、地层的空间展布,本文基于区域重磁数据,并以地表地质、钻孔地质等信息为约束,开展深部地质结构的反演研究,厘定了地层及岩体的展布,并结合已知矿床的重磁组合方式和控矿地质要素,基于重磁反演结果在钟姑矿田内圈定了两处有利靶区,为下一步找矿工作提供参考。  相似文献   

6.
This paper presents a review of the available information on the significant porphyry, epithermal, and orogenic gold districts in Argentina, including the tectonic, geological, and structural settings of large deposits or deposits that have been exploited in the past. Based on this review of the geology and mineralization, targeting models are developed for epithermal and orogenic gold systems, in order to produce GIS-based prospectivity models. Using publically available digital geoscience data, weights of evidence and fuzzy logic prospectivity maps were generated for epithermal and orogenic gold mineralization in Argentina. The results of the prospectivity mapping highlight existing gold deposits within known mineralized districts throughout Argentina, as well as other highly prospective areas with no known deposits within these districts. Additionally, areas within Argentina that have no known gold mineralization (based on publically available information) were highlighted as being highly prospective based on the models used.  相似文献   

7.
A 2D prospectivity model of epithermal gold mineralisation has been completed over the Taupo Volcanic Zone (TVZ), using the weights of evidence modelling technique. This study was used to restrict a 3D geological interpretation and prospectivity model for the Ohakuri region. The TVZ is commonly thought of as a present-day analogue of the environment in which many epithermal ore deposits, such as in the Hauraki Goldfield, Coromandel Volcanic Zone, are formed. The models utilise compiled digital data including historical exploration data, geological data from the Institute of Geological and Nuclear Sciences Ltd. Quarter Million Mapping Programme, recent Glass Earth geophysics data and historic exploration geochemical data, including rock-chip and stream sediment information. Spatial correlations between known deposits and predictive maps are determined from the available data, which represent each component of the currently accepted mineral system model for epithermal gold. The 2D prospectivity model confirms that the TVZ has potential for gold mineralisation. However, one of the weaknesses of this weights of evidence model is that the studies are carried out in 2D, with an approximation of 3D provided by geophysical and drilling data projected to a 2D plane. Consequently, a 3D prospectivity model was completed over the Ohakuri area, constrained by the results of the 2D model and predictive maps. The 3D model improved the results allowing more effective exploration targeting. However, the study also highlighted the main issues that need to be resolved before 3D prospectivity modelling becomes standard practise in the mineral exploration industry. The study also helped develop a work flow that incorporates preliminary 2D spatial data analysis from the weights of evidence technique to more effectively restrict and develop 3D predictive map interpretation and development.  相似文献   

8.
Identifying highly favorable areas related to a particular mineralization type is the main objective of mineral prospectivity modeling (MPM). The northwestern portion of Ahar-Arasbaran porphyry copper belt (AAPCB) is situated within the Urumieh-Dokhtar magmatic belt (UDMB). Because of owning many worthwhile Cu-Mo and Cu-Au porphyry deposits, this area is entitled to incorporate diverse spatial evidence layers for the MPM. In this paper, a hybrid AHP-VIKOR, as an improved knowledge-driven MPM procedure has been proposed for integration of various exploration evidence layers. For this, the AHP is used to calculate important weights of spatial criteria while the VIKOR is applied to outline ultimate prospectivity model. Six effective spatial evidence layers pertaining to the Varzaghan District are selected: (1) multi-elemental geochemical layer of Cu-Mo-Bi-Au; (2) remotely sensed data of argillic, phyllic, and iron oxide alteration layers; and (3) geological and structural layers of Oligo-Miocene intrusions and fault. In addition, a fuzzy prospectivity model (γ?=?0.9) is implemented to assess the AHP-VIKOR approach. Two credible validation methods comprising normalized density index and success rate curve are adapted for quantitative evaluation of predictive models and enhancing the probability of exploration success. The achieved results proved the higher accuracy of the AHP-VIKOR model compared with the fuzzy model in delimiting the favorable areas.  相似文献   

9.
Mineral exploration programs commonly use a combination of geological, geophysical and remotely sensed data to detect sets of optimal conditions for potential ore deposits. Prospectivity mapping techniques can integrate and analyse these digital geological data sets to produce maps that identify where optimal conditions converge. Three prospectivity mapping techniques – weights of evidence, fuzzy logic and a combination of these two methods – were applied to a 32,000 km2 study area within the southeastern Arizona porphyry Cu district and then assessed based on their ability to identify new and existing areas of high mineral prospectivity. Validity testing revealed that the fuzzy logic method using membership values based on an exploration model identified known Cu deposits considerably better than those that relied solely on weights of evidence, and slightly better than those that used a combination of weights of evidence and fuzzy logic. This led to the selection of the prospectivity map created using the fuzzy logic method with membership values based on an exploration model. Three case study areas were identified that comprise many critical geological and geophysical characteristics favourable to hosting porphyry Cu mineralisation, but not associated with known mining or exploration activity. Detailed analysis of each case study has been performed to promote these areas as potential targets and to demonstrate the ability of prospectivity modelling techniques as useful tools in mineral exploration programs.  相似文献   

10.
南泥湖钼多金属矿田是中国重要的钼(钨)铅锌银多金属矿产地,已探明超大型钼(钨)矿床3处,大型钼(钨)矿床3处,中、大型铅锌银(金)矿床10余处。矿田具有优越的地质成矿条件,深部找矿潜力巨大。现有矿产勘查深度主要是500 m以浅范围,深部(500~2000 m)找矿工作基本为空白,需要使用综合地球物理方法研究深部成矿规律,预测新的矿产资源。文章通过研究该区地质、地球物理场特征和典型矿床物探异常特征,取得了有意义的研究成果。(1)确定了与成矿关系密切的隐伏岩体侵入模型:将全区隐伏岩体从南至北分为3个区,Ⅰ区隐伏岩体顶面深度0~800 m,分布面积约125 km~2;Ⅱ区隐伏岩体顶面深度0.8~1.5 km,分布面积约158 km~2;Ⅲ区隐伏岩体顶面深度1.5~3 km,分布面积约233 km~2。(2)建立了立体成矿模型(根据成矿空间位置的不同从地表向下分为4个空间成矿区)和综合地球物理找矿模型(包括隐伏岩体、隐伏岩体顶上带、岩钟和斑岩体、矿体和矿化体的地球物理场标志)。(3)指出隐伏岩体顶上带及其上方的岩钟、岩脉、岩枝和小斑岩体等是成矿有利部位。(4)预测了找矿潜力;总结了寻找钼钨铅锌银金矿产的勘查方法技术组合。研究成果对在该区和类似矿区进行深部找矿工作具有重要意义。  相似文献   

11.
Geographic Information Systems (GIS) provide an efficient vehicle for the generation of mineral prospectivity maps, which are products of the integration of large geological, geophysical and geochemical datasets that typify modern global‐scale mineral exploration. Conventionally, two contrasting approaches have been adopted, an empirical approach where there are numerous deposits of the type being sought in the analysed mature terrain, or a conceptual approach where there are insufficient known deposits for a statistically valid analysis. There are also a variety of potential methodologies for treatment of the data and their integration into a final prospectivity map. The Lennard Shelf represents the major Mississippi Valley‐type (MVT) province in Australia; however, there are only 13 deposits or major prospects known, making an empirical approach to prospectivity mapping impractical. Instead, a conceptual approach was adopted, where critical features that control the location of MVT deposits on the Lennard Shelf, as defined by widely accepted genetic models, were translated into features related to fluid pathways, depositional traps and fluid outflow zones, which can be mapped in a GIS and categorised as either regional or restricted diagnostic, or permissive criteria. All criteria were derived either directly from geological and structural data, or indirectly from geophysical and geochemical datasets. A fuzzy‐logic approach was adopted for the prospectivity analysis, where each interpreted critical feature of the conceptual model was assigned a weighting between 0 and 1 based on its inferred relative importance and reliability. The fuzzy‐logic method is able to cope with incomplete data, a common problem in regional‐scale exploration datasets. The data were best combined using the gamma operator to produce a fuzzy‐logic map for the prospectivity of MVT deposits on the southeastern Lennard Shelf. Five categories of prospectivity were defined. Importantly, from an exploration viewpoint, the two lowest prospectivity categories occupy ~90% and the highest two categories only 1.6% of the analysed area, yet eight of the 13 known MVT deposits lie in the latter and none in the former: i.e. all lie within ~10% of the area, despite the fact that deposit locations were not used directly in the analysis. The propectivity map also defines potentially mineralised areas in the central southeastern Lennard Shelf and the southern part of the Oscar Ranges, where there are currently no known deposits. Overall, the analysis demonstrates the power of fuzzy‐logic prospectivity mapping on a semi‐regional to regional scale, and emphasises the value of geological data, particularly accurate geological maps, in exploration for hydrothermal mineral deposits that formed late in the evolution of the terrain under exploration.  相似文献   

12.
成矿预测:从二维到三维   总被引:1,自引:0,他引:1  
随着矿产资源勘探方法以及计算机科学技术的不断发展,成矿预测的理论和方法已从定性发展至定量,从二维拓展到三维。近十年来,随着深部矿产资源勘探工作的推进,三维成矿预测研究得到了迅猛发展,相关理论与方法也已逐步走向成熟。本文总结了国内外二维成矿预测研究的现状,同时对近十年来国内外学者在三维地质建模技术、三维成矿预测方法等方面的主要成果和进展做了系统总结和分析。目前,国内外多个地区已相继开展了三维成矿预测工作,并成功圈定多个深部找矿靶区,相关成果为深部找矿勘探工作提供了新的方法和方向。在此基础上,本文对未来三维成矿预测的发展趋势进行展望,相较于传统的二维成矿预测,三维成矿预测往往受限于三维预测信息的缺乏。如何更好的挖掘二维数据在深度方向的指示能力,将二维数据推演至三维环境,利用数值模拟、机器学习等方法开展数据挖掘、充分发挥已有数据的内蕴信息将在未来推动三维成矿预测理论的深入发展,提高三维成矿预测的理论方法及应用实践水平。  相似文献   

13.
This paper describes the geology and tectonics of the Paleoproterozoic Kumasi Basin, Ghana, West Africa, as applied to predictive mapping of prospectivity for orogenic gold mineral systems within the basin. The main objective of the study was to identify the most prospective ground for orogenic gold deposits within the Paleoproterozoic Kumasi Basin. A knowledge-driven, two-stage fuzzy inference system (FIS) was used for prospectivity modelling. The spatial proxies that served as input to the FIS were derived based on a conceptual model of gold mineral systems in the Kumasi Basin. As a first step, key components of the mineral system were predictively modelled using a Mamdani-type FIS. The second step involved combining the individual FIS outputs using a conjunction (product) operator to produce a continuous-scale prospectivity map. Using a cumulative area fuzzy favourability (CAFF) curve approach, this map was reclassified into a ternary prospectivity map divided into high-prospectivity, moderate-prospectivity and low-prospectivity areas, respectively. The spatial distribution of the known gold deposits within the study area relative to that of the prospective and non-prospective areas served as a means for evaluating the capture efficiency of our model. Approximately 99% of the known gold deposits and occurrences fall within high- and moderate-prospectivity areas that occupy 31% of the total study area. The high- and moderate-prospectivity areas illustrated by the prospectivity map are elongate features that are spatially coincident with areas of structural complexity along and reactivation during D4 of NE–SW-striking D2 thrust faults and subsidiary structures, implying a strong structural control on gold mineralization in the Kumasi Basin. In conclusion, our FIS approach to mapping gold prospectivity, which was based entirely on the conceptual reasoning of expert geologists and ignored the spatial distribution of known gold deposits for prospectivity estimation, effectively captured the main mineralized trends. As such, this study also demonstrates the effectiveness of FIS in capturing the linguistic reasoning of expert knowledge by exploration geologists. In spite of using a large number of variables, the curse of dimensionality was precluded because no training data are required for parameter estimation.  相似文献   

14.
辽宁瓦房店金刚石矿田是我国重要的金伯利岩型金刚石矿集区.为了更好地发挥物探在该区寻找金刚石矿的作用,对以往物探工作程度、使用的方法、取得的成果进行了系统梳理.通过总结发现,地面磁测在圈定浅地表金伯利岩体中发挥了重要作用;在寻找深部隐伏金伯利岩体时,音频大地电磁测量、井中物探发挥了重要作用;在研究金刚石矿控矿因素等问题时,1∶5万区域重力测量、大地电磁剖面测量发挥了重要作用.总之,物探是瓦房店矿田金刚石矿勘查中的重要组成部分,合理的方法组合能够解决相应的地质问题.  相似文献   

15.
One of the major strengths of a GIS is the ability to integrate and combine multiple layers of geoscience data for producing mineral potential maps showing favorable areas for mineral exploration. Once the data is prepared properly, the GIS, jointly with other statistical and geostatistical software packages, can be used to manipulate and visualize the data in order to produce a mineral prospectivity map. Many spatial modeling techniques can be employed to produce mineral potential maps. This paper demonstrates a technique to define favorable areas for REE mineralization with AHP technique using geological, geochemical, geophysical, alteration and faults density spatial data in the Kerman-Kashmar Tectonic Zone of central Iran. The AHP is a powerful and flexible multi-criteria decision-making tool for dealing with complex problems where both qualitative and quantitative aspects need to be considered. This approach is knowledgedriven method and can be applied in other areas for conventional use in mineral exploration.  相似文献   

16.
A major challenge for mineral exploration geologists is the development of a transparent and reproducible approach to targeting exploration efforts, particularly at the regional to camp scales, in terranes under difficult cover where exploration and opportunity costs are high. In this study, a three-pronged approach is used for identifying the most prospective ground for orogenic gold deposits in the Paleoproterozoic Granite-Tanami Orogen (GTO) in Western Australia.A key input to the analyses is the recent development of a 4D model of the GTO architectural evolution that provides new insights on the spatio-temporal controls over orogenic gold occurrences in the area; in particular, on the role of pre-mineralization (pre-1795 Ma) DGTOE–DGTO1–DGTO2 architecture in localization of gold deposits and the spatial distribution of rock types in 3D. This information is used to build up a model of orogenic gold minerals system in the area, which is then integrated into the three mutually independent but complementary mineral prospectivity maps namely, a concept-driven “manual” and “fuzzy” analysis; and a data-driven “automated” analysis.The manual analysis involved: (1) generation of a process-based gold mineral systems template to aid target selection; (2) manual delineation of targets; (3) manual estimation of the probability of occurrence of each critical mineralization process based on the available information; and (4) combining the above probabilities to derive the relative probability of occurrence of orogenic gold deposits in each of the targets. The knowledge-based Geological Information System (GIS) analysis attempts to replicate the expert knowledge used in the manual approach, but queried in a more systematic format to eliminate human heuristic bias. This involves representing the critical mineralization processes in the form of spatial predictor maps and systematically querying them through the use of a fuzzy logic model to integrate the predictor maps and to derive the western GTO orogenic gold prospectivity map. The data-driven ‘empirical’ GIS analysis uses no expert knowledge. Instead it employs statistical measures to evaluate the spatial associations between known deposits and predictor maps to establish weights for each predictor layer then combines these layers into a predictive map using a Weights of Evidence (WofE) approach.Application of a mineral systems approach in the manual analysis and the fuzzy analysis is critical: potential high value targets identified by these approaches in the western GTO lie largely under cover, whereas traditional manual targeting is biased to areas of outcrop or sub-crop amenable to direct detection technology such as exploration geochemistry, and therefore towards areas that are data rich.The results show the power of combining the three approaches to prioritize areas for exploration. While the manual analysis identifies and employs human intuition and can see through incomplete datasets, it is difficult to filter out human bias and to systematically apply to a large region. The fuzzy method is more systematic, and highlights areas that the manual analysis has undervalued, but lacks the intuitive power of the human mind that refines the target by seeing through incomplete datasets. The empirical WoE method highlights correlations with favorable host stratigraphy and highlights the control of an early set of structures potentially undervalued in the knowledge driven approaches, yet is biased due to the incomplete nature of exploration datasets and lack of abundant gold deposits due to the extensive cover.The results indicate that the most prospective areas for orogenic gold in western GTO are located in the central part of the study area, largely in areas blind to previous exploration efforts. According to our study, the procedure to follow should be to undertake the analyses in the following order: manual prospectivity analysis, followed by the conceptual fuzzy approach, followed by the empirical GIS-based method. Undertaking the manual analysis first is important to prevent explorationists from being biased by the automated GIS-based outputs. It is however emphasized that all of the prospectivity outputs from these three methods are possible, and they should not be treated as ‘treasure maps’, but instead, as decision-support aids. Therefore, a final manual prospectivity analysis redefined by the mutual consideration of output from all of the methods is required.The strategy employed in this study constitutes a new template for best-practice in terrane- to camp-scale exploration targeting that can be applied to different terranes and deposit types, particularly in terranes under cover, and provides a step forward in managing uncertainty in the exploration targeting process.  相似文献   

17.
This paper demonstrates a modeling procedure of mineral potential mapping based on singularity theory, and further presents an idea to look into metallogeny of Sn–Cu polymetallic deposits in southeastern Yunnan mineral district, China by applying a localized regression method. Mineralization is a typical cascade process generally accompanied by irregular geological, geochemical and geophysical signatures. Singularity index as an efficient anomaly analytical tool helps to identify anomalies as well as characterize formation processes of these anomalies. In this study, the singularity-based mineral potential mapping method was utilized to characterize hydrothermal mineralization associated with magmatic, tectonic and sedimentary processes in this district. Based on the results, a mineral prospectivity model was constructed to delineate target areas. In addition to mineral prospectivity, controlling effects of geo-processes on mineralization are spatially non-stationary. Geographically-weighted regression analysis was thus employed to investigate these spatially-varied controlling effects and it has contributed to improve understanding to local metallogeny in the study area. Results of the spatial analysis presented can be used to guide following stages of mineral exploration in the district.  相似文献   

18.
山东省铁矿分布广泛,在鲁西南广大覆盖区产有许多铁矿床,其中在菏泽市单县地区发育沉积变质型铁矿。简要介绍了单县大刘庄铁矿区的地质特征:该矿床埋藏于第四系-古近系巨厚层(覆盖厚度达458~549 m)以下,赋存于新太古代泰山岩群山草峪组中;区内铁矿体总体呈层状、似层状、透镜状,产状与围岩一致,走向为NW-SE,总体倾向SW,倾角为45°~60°;铁矿中全铁平均品位约25%,磁性铁平均品位约20%。详细介绍了运用地质、物探等勘查方法进行找矿的过程:通过对区内的物探数据进行分析,解译了矿区基岩的地质特征和隐伏断层的重要信息;根据大比例尺地质、物探示矿信息特征,建立了包含地质环境、矿床特征和地球物理特征(明显高磁异常和高重力异常及其梯度带)的预测模型;通过对大刘庄铁矿的勘查,总结出了在厚大覆盖层下铁矿床的勘查流程:“航磁异常选区→资料全面系统收集→工作区优选→磁法测量和重力测量→地质信息分析→大比例尺高磁和重力剖面、CSAMT和SIP测量→通过优选成矿有利部位→深部钻探施工→井中磁测”。  相似文献   

19.
钟姑地区位于宁芜中生代火山岩盆地南段,已发现有白象山铁矿等多个大型铁矿,是长江中下游成矿带以玢岩型铁矿为主的矿集区。本文以钟姑地区实测岩石物性参数为桥梁,以实测重磁数据为基础,分析了该区白象山铁矿、钟九铁矿和云楼铁矿的重磁场分布特征,并根据典型矿区已知地质条件,运用成熟的2.5D重磁联合反演技术进行计算,从定量角度认识铁矿体深部发育形态、位置与重磁异常之间对应关系,建立钟姑地区白象山铁矿等典型矿床的重磁找矿模式,为该区进一步找矿突破提供地球物理场信息。  相似文献   

20.
宁芜盆地白象山铁矿床成矿作用过程数值模拟   总被引:5,自引:1,他引:4  
白象山铁矿床是宁芜火山岩盆地钟姑矿田中典型的玢岩型铁矿床,主矿体赋存于闪长岩和黄马青组砂页岩接触带部位的内带-正带,呈似层状产出。本文采用数值模拟的方法研究探讨白象山铁矿床成矿过程的动力学机制以及汇流容矿空间的形成。在建立白象山矿床典型剖面以及三维实体模型的基础上,选取典型剖面,基于FLAC 3D系统,对白象山铁矿床的充填过程进行数值模拟。模拟结果显示,白象山铁矿床存在容矿汇流空间,其形成受力-热-流体的耦合作用制约;扩容空间的形成可为矿质的沉淀以及交代作用提供有利的成矿空间,并为流体的汇聚提供有利场所,也表明白象山铁矿床的成矿过程与力学作用密切相关。本文的模拟研究充分揭示了白象山铁矿床成矿过程中的物理过程,岩石不同的力学性质以及接触带的形态是控矿的重要因素,这为进一步的找矿工作提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号