首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The method of principal component beamforming described in this paper is an array data reduction method that allows one to observe the statistically uncorrelated components of wave energy arriving at an array of acoustic sensors. The method can be used to process array data so as to observe and identify the sources of noise, both environmental and self noise. After identifying the sources of noise, the method of principal components can be used to discriminate signal from noise. The method can be applied to active systems (subbottom profilers) as well as passive systems. A model of isotropic noise and incident bandlimited plane waves is used to study array resolution and bandwidth effects. Experimental data from a2 times 3planar acoustic array were used to identify sources of hydro-flow related noise in an underwater vehicle. In all cases studied, the technique provides a maximum spatial information analysis method to the observer.  相似文献   

2.
An infinite array of evenly spaced groups of oscillating bodies is considered. All groups (or ‘attenuators’) are equal and they have the same directional orientation. The angle of wave incidence is arbitrary. Regular waves diffracted and radiated from the bodies interfere constructively into rays of plane waves propagating away from the array. The number of rays depends on the ratio between the wavelength and the interspacing between adjacent groups. To each ray there corresponds one term in the ‘array radiation resistance matrix’. The maximum wave power absorbed by the array is derived under the assumption of linear theory and of unconstrained amplitudes of the oscillating bodies. It is found that, apart from exceptional cases, all of the incident wave power may be absorbed by the array provided the total number of oscillating modes in each group is at least as large as the number of rays. It is then explicitly demonstrated that the condition for maximum power absorption is that all rays have a vanishing intensity. Further, some previously known general relations between scattered waves and radiated waves have been extended.  相似文献   

3.
波浪的方向分布对波浪的传播及其与工程结构物的作用都具有明显影响,目前现有的研究大多是基于单向波浪进行的。为了研究方向分布对群墩结构上的爬高影响,基于规则波浪与群墩作用的理论解,结合多向不规则波浪的造波方法,建立了多向不规则波浪与群墩作用的计算模型,同时进行了物理模型试验对模型的有效性进行了验证。系统地对群墩周围及表面上的波浪爬高进行了计算分析,结果表明,方向分布对波浪爬高具有较大的影响,且不同位置处的影响并不相同,在实际的工程设计中如果按照单向波浪计算,可能低估或者高估群墩周围的爬高。  相似文献   

4.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

5.
在C#中结合OpenGL索引顶点数组的海浪动态仿真   总被引:1,自引:0,他引:1  
刘丁  许惠平  叶娜 《海洋测绘》2008,28(4):45-48
基于海浪谱的线性叠加法来源于对真实海面长期观察所得的统计模型,在海浪仿真领域被广泛使用。研究了通过CsGL类库在C#中使用OpenGL进行海浪建模和仿真的技术,使用P-M海浪谱对海面进行反演,通过OpenGL的索引顶点数组和视点相关判别,高效逼真地实现了海浪的动态仿真。  相似文献   

6.
The relevant theory is presented and numerical results are compared with the analytical solution for the interaction of non-breaking waves with an array of vertical porous circular cylinders on a horizontal bed. The extension to the cases of unidirectional and multidirectional waves is obtained by means of a transfer function. The influence of the mechanical properties of porous structures and wave irregularity on wave transformation is analysed. Results for unidirectional and multidirectional wave spectra are compared to those obtained for regular waves. The model presented reproduces well the analytical results and provides a tool for analysing several engineering problems.  相似文献   

7.
采用Longuet-Higgins形式的方向分布函数作为已知谱,用模拟数据检验了作者是所提出的估计方法EEV合理性,并与扩展最大似然方法(EMLM)及Lygre等(1986)的最在熵方法(MEM)作了比较,在验证和比较中,使用纵摇-横摇浮标,星形阵形和CERC阵列作为复合阵列,计算表明,EEV优于EMLM和EME。最后将EEV和EMLM两种方法应用于仪器阵列的外海观测数据,得到了比较合理的海浪方向  相似文献   

8.
In this study we investigate how the wave energy deficit in the lee of an array of overtopping type wave energy converting devices (WECs), redistributes with distance from the array due to the natural variability of the wave climate and wave structure interactions. Wave directional spreading has previously been identified as the dominant mechanism that disperses the wave energy deficit, reducing the maximum wave height reduction with increasing distance from the array. In addition to this when waves pass by objects such as an overtopping type WEC device, diffracted waves re-distribute the incident wave energy and create a complex interference pattern. The effect of wave energy redistribution from diffraction on the wave energy shadow in the near and far field is less obvious. In this study, we present an approximate analytical solution that describes the diffracted and transmitted wave field about a single row array of overtopping type WECs, under random wave conditions. This is achieved with multiple superpositions of the analytical solutions for monochromatic unidirectional waves about a semi-infinite breakwater, extended to account for partial reflection and transmission. The solution is used to investigate the sensitivity of the far field wave energy shadow to the array configuration, level of energy extraction, incident wave climate, and diffraction. Our results suggest that diffraction spreads part of the wave energy passing through the array, away from the direct shadow region of the array. This, in part, counteracts the dispersion of the wave energy deficit from directional spreading.  相似文献   

9.
The hydrodynamic interactions due to wave scattering between the numbers of an array of stationary, truncated circular cylinders simulating the columns of an idealized tension-leg platform (TLP) are investigated. The method of solution for the fluid velocity potential involves replacing scattered waves by equivalent plane waves together with non-planar correction terms. This technique is, therefore, essentially a large spacing approximation. Use of this approach makes it possible to determine the hydrodynamic interactions between the array members utilizing only the diffraction characteristics of an isolated cylinder.Numerical results are presented for six array configurations consisting of 2–6 cylinders representing the legs of idealized TLPs. Calculations of the wave loads on these cylinders have been performed for a range of wave and structural parameters. It is found that, for certain parameter combinations, the influence of neighbouring bodies on the total wave field leads to hydrodynamic loading on individual columns which is significantly greater than the loading they would experience in isolation. The presented results demonstrate the significance of hydrodynamic interactions between TLP columns and clearly indicate that these effects should be considered by the designers and researchers associated with TLPs.  相似文献   

10.
《Coastal Engineering》2006,53(8):675-690
It is important to accurately locate the wave breaking region for the calculation of nearshore hydrodynamics. Energy from breaking waves drives hydrodynamic phenomena such as wave set-up, set-down, wave run-up, longshore currents, rip currents, and nearshore circulation. Numerous studies have been undertaken to describe when and where wave breakings occurs. Recent development of computer resources permits the use of phase-resolving numerical models for the study of wave propagation, transformation, and nearshore hydrodynamics. This requires new types of wave breaking criteria for the numerical model. The Relative Trough Froude Number (RTFN) is a new wave breaking criterion. This model is based on the moving hydraulic jump concept, therefore it satisfies properly posed boundary-value conditions. It has been experimentally proved that a critical RTFN at the initiation of wave breaking is consistent with and without the presence of an opposing current, but previous efforts did not investigate the theory for the critical value. This paper provides a theoretical analysis and a numerical analysis to demonstrate why the RTFN theory works as a wave breaking initiation (trigger) index. The theoretical analysis provides a universal constant for the initiation of wave breaking for all water depths assuming the Miche formula properly describes the wave breaking condition. A subroutine for wave breaking in a numerical model, FUNWAVE was modified to include the RTFN trigger. The numerical model was calibrated with data from wave tank experiments, and it was found that the critical condition is very close to the theoretical number, CTFN = 1.45. A second paper (in preparation) provides details of the theory and experiments for a second criterion for termination of wave breaking. The time scale for the establishment of the breaking region i.e., between the initiation position and termination position, depends upon the additional momentum present under turbulent condition within the breaking wave. This subject is not considered herein.  相似文献   

11.
分析海浪方向谱的扩展本征矢方法Ⅰ.方法的导出   总被引:4,自引:0,他引:4  
基于交叉谱矩阵可以按本征值划分为信号和含有噪音部分的思想,提出了一种自直接测量数据估计海浪方向谱的方法。该方法称为扩展本征矢方法(EEV),可应用于单点测量系统、仪器阵列以及由二者构成的复合阵列。现有的某些估计方法(如最大似然方法及其扩展形式等)仅是此方法的某种特例。  相似文献   

12.
The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory.To design more effective floating breakwaters,the transmission rate of waves propagating through the array is evaluated.Each cylinder in the array is partly made of porous materials.Specifically,it possesses a porous sidewall and an impermeable bottom.In addition,an inner porous plate is horizontally fixed inside the cylinders.It dissipates the wave more effectively and eliminates the sloshing phenomenon.The approach suggested by Kagemoto and Yue(1986) is adopted to solve the multiple-scatter problem,while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies,which efficiently saves computation time.Meanwhile,a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results.The draft of the cylinders,the location of the inner porous plate,and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.  相似文献   

13.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

14.
将Pawka为改进最大似然方法(MLM)而提出的迭代方案应用于扩展本征关方法(EEV),作为EEV的一种迭代形式(IEEV)。用模拟数据检验了IEEV的合理性,并与EEV作了比较。计算结果表明,IEEV的估计性状较EEV有改善。最后将IEEV及EEV用于分析仪器阵列的外海观测数据。  相似文献   

15.
This paper presents results of combined consideration of sound coherence and array signal processing in long-range deep-water environments. Theoretical evaluation of the acoustic signal mutual coherence function (MCF) of space for a given sound-speed profile and particular scattering mechanism is provided. The predictions of the MCF are employed as input data to investigate the coherence-induced effects on the horizontal and vertical array gains associated with linear and quadratic beamformers with emphasis on the optimal ones. A method of the radiation transport equation is developed to calculate the MCF of the multimode signal under the assumption that internal waves or surface wind waves are the main source of long-range acoustic fluctuations in a deep-water channel. Basic formulations of the array weight vectors and small signal deflection are then exploited to examine optimal linear and quadratic processors in comparison with plane-wave beamformers. For vertical arrays, particular attention is paid also to evaluation of the ambient modal noise factor. The numerical simulations are carried out for range-independent environments from the Northwest Pacific for a sound frequency of 250 Hz and distances up to 1000 km. It was shown distinctly that both signal coherence degradation and modal noise affect large-array gain, and these effects are substantially dependent on the processing technique used. Rough surface sound scattering was determined to cause the most significant effects  相似文献   

16.
17.
The present study investigates the combined wave field that is induced by the continuous interaction of plane waves with an array of truncated circular cylinders in front of a rigid wall. The long-term goal of the study is the investigation of possible increase in the efficiency of cylindrical Wave Energy Converters (WECs) by putting in the vicinity of the array a barrier to propagation, a wall, that could assist the reflection of the incoming waves. The main task is to develop a generic solution method that is free of conceptual simplifications employed, e.g. by the method of images and the assumption of “pure” wave reflection. To cope with the set task, the proposed method relies on the semi-analytical formulation of the velocity potentials, while the solution is sought by combined expressions that involve polar and elliptical harmonics. The wall is represented as an elliptical cylinder with zero semi-minor axis. This assumption has eventually a beneficial effect to the underlying formulation given that it simplifies significantly the expansions of the involved diffraction potentials.  相似文献   

18.
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration.  相似文献   

19.
A numerical model is developed that can predict the interaction of regular waves normally incident upon a curtainwall-pile breakwater; the upper part of which is a vertical wall and the lower part consists of an array of vertical piles. The numerical model is based on an eigenfunction expansion method, and utilizes a boundary condition nearby the vertical piles that accounts for wave energy dissipation. Numerical solution comprises a finite number of terms, which is a superposition of propagating waves and a series of evanescent waves. The modeling is validated by comparison with previous experimental studies and overall agreement between measurement and calculation is fairly good. The numerical results are related to reflection, transmission, and dissipation coefficient; wave run-up, wave force, and wave overturning moment are also presented. Effect of porosity, relative draft, and relative water depth are discussed; the choice of suitable range of them is described. The relative draft is more effective for shallow water waves. Model shows decrease in relative draft and leads to reduction of relative wave force, overturning moment, and runup. It is shown that curtainwall-pile breakwaters can operate both effectively and efficiently in the range of relative draft between 0.15 and 0.75. The range 0.5 to 0.2 is also recommended for porosity.  相似文献   

20.
针对水下被测磁场目标,根据磁场测量的要求,分析计算了测量单元的布置方式和基阵的受力,设计了一种用于布放该磁场测量系统的基阵结构。 通过海上试验验证,该基阵入水姿态平稳,着底姿态良好,满足测试要求,为水下装备磁场指标评估提供依据和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号