首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Plagioclase feldspars with mean compositions Ab91,3Or4,7An4,0 and Ab88,7An10,1Or1,2 have been studied by transmission electron microscopy and electron diffraction. The substructure consists of thin lamellae of albite and oligoclase. Two types of orientations of the lamellar planes were observed. The orientation of the more common type was found to change from (08 \(\bar 1\) ) to about ( \(\bar 1\) , 21, \(\bar 2\) ) as a function of the mean potassium content. The plane of the other type was found to be near ( \(\bar 7\) 12). Only the first type of lamellae produces visible Schiller colours.  相似文献   

2.
Elastic energy calculations based upon the coherent model of Willaime and Brown [Acta Cryst. A30, 316–331 (1974)] have been carried out for some exsolution textures in peristerite and Böggild intergrowths. For peristerites it is demonstrated that substitution of K for Na moves the orientation of the exsolution lamellae from (08 \(\overline {\text{1}} \) ) to about ( \(\overline {\text{1}} \) , 21, \(\overline {\text{2}} \) ) in agreement with observations. An electron microscope study of exsolution textures in labradorite and andesine plagioclases has been carried out and information about small structural differences in these lamellar structures has been obtained from elastic energy calculations.  相似文献   

3.
Dislocation configurations in natural single crystals of CaTiO3 perovskite deformed in high-temperature creep were examined and characterized by transmission electron microscopy. Screw dislocations with Burgers vector [100]pc and [011]pc, dissociated on the $(01\bar 1)_{{\text{pc}}} $ plane, form rectangular networks with extended four-fold nodes in the shape of octagons, a configuration never observed in any of the previously investigated perovskites, except CaGeO3. Screw dislocations with Burgers vector [101]pc and $(\bar 101)_{{\text{pc}}} $ , on the (010)pc plane, react to form a twist wall; the dislocations with Burgers vector [002] produced by the reaction decompose into two perfect dislocations [001]pc. This results in a new configuration, never observed before, with three-fold nodes at the corners of rectangles. Both the octagonal extended nodes and the junctions decomposed into perfect dislocations are seen in samples deformed indifferently by slip on {100}pc or {110}pc planes, but they seem to appear only above 1520 K, in the cubic phase.  相似文献   

4.
A new mineral vigrishinite, epistolite-group member and first layer titanosilicate with species-defining Zn, was found at Mt. Malyi Punkaruaiv, in the Lovozero alkaline complex, Kola Peninsula, Russia. It occurs in a hydrothermally altered peralkaline pegmatite and is associated with microcline, ussingite, aegirine, analcime, gmelinite-Na, and chabazite-Ca. Vigrishinite forms rectangular or irregularly shaped lamellae up to 0.05 × 2 × 3 cm flattened on [001]. They are typically slightly split and show blocky character. The mineral is translucent to transparent and pale pink, yellowish-pinkish or colorless. The luster is vitreous. The Mohs’ hardness is 2.5–3. Vigrishinite is brittle. Cleavage is {001} perfect. D meas = 3.03(2), D calc = 2.97 g/cm3. The mineral is optically biaxial (?), α = 1.755(5), β = 1.82(1), γ = 1.835(8), 2V meas = 45(10)°, 2V calc = 50°. IR spectrum is given. The chemical composition (wt %; average of 9 point analyses, H2O is determined by modified Penfield method) is as follows: 0.98 Na2O, 0.30 K2O, 0.56 CaO, 0.05 SrO, 0.44 BaO, 0.36 MgO, 2.09 MnO, 14.39 ZnO, 2.00 Fe2O3, 0.36 Al2O3, 32.29 SiO2, 29.14 TiO2, 2.08 ZrO2, 7.34 Nb2O5, 0.46 F, 9.1 H2O, ?0.19 O=F2, total is 101.75. The empirical formula calculated on the basis of Si + Al = 4 is: H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05Ba0.02)Σ1.96(Ti2.68Nb0.41Fe 0.18 3+ Zr0.12)Σ3.39(Si3.95Al0.05)Σ4 20.31F0.18. The simplified formula is: Zn2Ti4?x Si4O14(OH,H2O,□)8 (x < 1). Vigrishinite is triclinic, space group P $\bar 1$ , a = 8.743(9), b = 8.698(9), c = 11.581(11)Å, α = 91.54(8)°, β = 98.29(8)°, γ = 105.65(8)°, V = 837.2(1.5) Å3, Z = 2. The strongest reflections in the X-ray powder pattern (d, Å, ?I[hkl]) are: 11.7-67[001], 8.27-50[100], 6.94-43[0 $\bar 1$ 1, $\bar 1$ 10], 5.73–54[1 $\bar 1$ 1, 002], 4.17-65[020, $\bar 1$ $\bar 1$ 2, 200], and 2.861-100[3 $\bar 1$ 0, 2 $\bar 2$ 2, 004, 1 $\bar 3$ 1]. The crystal structure model was obtained on a single crystal, R = 0.171. Vigrishinite and murmanite are close in the structure of the TiSiO motif, but strongly differ from each other in part of large cations and H-bearing groups. Vigrishinite is named in honor of Viktor G. Grishin (b. 1953), a Russian amateur mineralogist and mineral collector, to pay tribute to his contribution to the mineralogy of the Lovozero Complex. The type specimen is deposited in the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   

5.
Single crystals of quartz, shock-loaded along the a axis to pressures of 22 Gpa, 24 GPa, 26 GPa and 30 GPa were examined by high-voltage transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction. Asymmetric broadenings of X-ray lines indicate spatial inhomogeneity of shock effects. X-ray streaking angles in the reciprocal lattice planes h0 \(\bar h\) l, 0k \(\bar k\) l and hki0 indicate a slight tilting deformation by rotation about [00.1] in (0001). TEM reveals glass lamellae which are mostly in (01 \(\bar 1\) 2) orientation, and are correlated with optical planar elements and with surface steps seen in SEM. No dislocations are found. There are (0001) lamellar features, probably Brazil twins. The (01 \(\bar 1\) 2) glass lamellae develop directly from bands of quartz in which intense deformation has produced a fine-scale lamellar to blocky structure, possibly also originating by twinning. Relics of crystalline structure are found in almost completely vitrified lamellae. Stishovite occurs in heavily deformed parts of the 22 GPa and 24 GPa specimens, in patches of densified glass distinct from the sharply bounded lamellae. The nucleationless, pervasive transformation of lamellae to glass, with preservation of their sharp boundaries, is attributed to defect coalescence analogous to vitrification by radiation damage (metamictization). Some patchy glass may be due to melting.  相似文献   

6.
Single crystals of sanidine which were experimentally deformed so as to introduce the (010)[100] slip system were examined by transmission electron microscopy (tem). Dislocation glide is mainly manifested in the samples deformed at 700° C, with a strain rate \(\dot \varepsilon = 1 - 2 \times 10^{ - 6} s^{ - 1} \) . In addition to the expected slip system another more important one, (12 \(\bar 1\) )[101], was found. The dislocations lying in (010) present a glissile dissociation. These observations have been discussed in term of the feldspar structure. Models for glissile dissociation in (010) are proposed: [100]=1/2[100]+1/2[100] or 1/2[101]+1/2[10 \(\bar 1\) ] and [101]=1/2[101]+1/2[101].  相似文献   

7.
We present 29Si MAS NMR data for a well-ordered natural anorthite, obtained in situ at temperatures of from 25 to 500° C, which follow the changes in the aluminosilicate framework through the P $\bar 1$ -I $\bar 1$ structural phase transition. Pairs of peaks due to sites offset by approximately 1/2 [111] converge through the P $\bar 1$ phase and only four peaks are present above about 241° C. The variation of the peak positions with temperature and correlations based on structural data for the P $\bar 1$ and I $\bar 1$ phases allow assignment of all the MAS-NMR peaks to crystallographic sites. A Landau-type analysis gives an expression that relates the separation of pairs of con verging peaks to the local order parameter for the P $\bar 1$ -I $\bar 1$ transition, from which we determine its temperature dependence. Data for the best-constrained set of peak positions give for the order parameter critical exponent β = 0.27±0.04, consistent with previous results indicating that the P $\bar 1$ -I $\bar 1$ transition in pure anorthite is tricritical. No significant change in the 29Si spin-lattice relaxation rate occurs across the P $\bar 1$ -I $\bar 1$ transition.  相似文献   

8.
Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a  $\varDelta P$ Δ P  standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3K 0 = 74.4 ± 5.3 GPa, and $\frac{{\text d}K}{{\text d}T} = -0.032 \pm 0.005\,\hbox{GPa K}^{-1}$ d K d T = - 0.032 ± 0.005 GPa K - 1 , assuming ${K}^{\prime}_{0} = 10 $ K 0 ′ = 10 . We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1?x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.  相似文献   

9.
Ephesite, Na(LiAl2) [Al2Si2O10] (OH)2, has been synthesized for the first time by hydrothermal treatment of a gel of requisite composition at 300≦T(° C)≦700 and \(P_{H_2 O}\) upto 35 kbar. At \(P_{H_2 O}\) between 7 and 35 kbar and above 500° C, only the 2M1 polytype is obtained. At lower temperatures and pressures, the 1M polytype crystallizes first, which then inverts to the 2M1 polytype with increasing run duration. The X-ray diffraction patterns of the 1M and 2M1 poly types can be indexed unambiguously on the basis of the space groups C2 and Cc, respectively. At its upper thermal stability limit, 2M1 ephesite decomposes according to the reaction (1) $$\begin{gathered} {\text{Na(LiAl}}_{\text{2}} {\text{) [Al}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{{\text{10}}} {\text{] (OH)}}_{\text{2}} \hfill \\ {\text{ephesite}} \hfill \\ {\text{ = Na[AlSiO}}_{\text{4}} {\text{] + LiAl[SiO}}_{\text{4}} {\text{] + }}\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ + H}}_{\text{2}} {\text{O}} \hfill \\ {\text{nepheline }}\alpha {\text{ - eucryptite corundum}} \hfill \\ \end{gathered}$$ Five reversal brackets for (1) have been established experimentally in the temperature range 590–750° C, at \(P_{H_2 O}\) between 400 and 2500 bars. The equilibrium constant, K, for this reaction may be expressed as (2) $$log K{\text{ = }}log f_{{\text{H}}_{\text{2}} O}^* = 7.5217 - 4388/T + 0.0234 (P - 1)T$$ where \(f_{H_2 O}^* = f_{H_2 O} (P,T)/f_{H_2 O}^0\) (1,T), with T given in degrees K, and P in bars. Combining these experimental data with known thermodynamic properties of the decomposition products in (1), the following standard state (1 bar, 298.15 K) thermodynamic data for ephesite were calculated: H f,298.15 0 =-6237372 J/mol, S 298.15 0 =300.455 J/K·mol, G 298.15 0 =-5851994 J/mol, and V 298.15 0 =13.1468 J/bar·mol.  相似文献   

10.
Single crystals of two novel calcium oxotellurate(IV) nitrates were grown under hydrothermal conditions and were structurally characterized by X-ray diffraction. Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ [ $Cc$ , $Z=4$ , $a=25.258(3)$ Å, $b=5.7289(7)$ Å, $c=17.0066(19)$ Å, $\beta =124.377(2)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 4083 $F^2$ data, 281 parameters] can be described as a non-classic order/disorder (OD) structure, which fulfills the basic principle of OD theory, viz. local equivalence of polytypes, but does not strictly follow the vicinity condition (VC) of OD theory. The structure is made up from an alternating stacking of non-polar layers composed of isolated [TeO $_3$ ] units and Ca $^{2+}$ ions and polar layers containing NO $_3^-$ ions and water molecules. The electron lone-pairs of the [TeO $_3$ ] units protrude into the free space of the anion/water layers. The crystal under investigation was a non-classic OD-twin of domains of a maximum degree of order (MDO). At the twin plane a fragment of the second MDO polytype is located. The main building blocks of Ca $_6$ Te $_5\text {O}_{15}$ (NO $_3$ ) $_2$ [ $P2_1/c$ , $Z=4$ , $a=15.494(2)$ Å, $b=5.6145(7)$ Å, $c=39.338(4)$ Å, $\beta =142.480(5)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 3026 $F^2$ data, 307 parameters] are isolated [TeO $_3$ ] units and Ca $^{2+}$ ions which are connected to a three-dimensional framework perforated by channels in which the N atoms of the nitrate anions are located and the electron lone-pairs of the [TeO $_3$ ] units protrude. The structure can topologically be derived from the structure of Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ by removing the water molecules and connecting the CaTeO $_3$ layers with additional [TeO $_3$ ] units and Ca $^{2+}$ ions.  相似文献   

11.
Spectral ratios of teleseismic P waves for 15 deep (>200 km) earthquakes recorded at 146 High-Sensitivity Seismographic Network stations in the Kanto district and its surrounding area, eastern Japan, were inverted for attenuation parameter $ t_P^{ * } $ . The dataset consisted of good-quality vertical-component seismograms, whose P phases were handpicked. The P wave spectral ratios with high signal-to-noise ratios were calculated up to 1 Hz for all the station pairs, linear regressed, and then inverted for $ t_P^{ * } $ using the technique of least squares . The result showed that the active volcanic areas were clearly characterized by high $ t_P^{ * } $ . In contrast, $ t_P^{ * } $ varied in the nonvolcanic areas. The present result on the $ t_P^{ * } $ distribution was roughly consistent with the shallow part (<30 km) of an attenuation structure, which has been previously obtained based on 3-D tomography by using records of high-frequency (around 5 Hz) P waves from local earthquakes. This suggested that the present method of $ t_P^{ * } $ estimation is valid. The advantage and possible application to other areas were also discussed.  相似文献   

12.
Natural springs have been reliable sources of domestic water and have allowed for the development of recreational facilities and resorts in the Central Appalachians. The structural history of this area is complex and it is unknown whether these natural springs receive significant recharge from modern precipitation or whether they discharge old water recharged over geological times scales. The main objective of this study was to use stable isotopes of water ( $\delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}}$ and $\delta^{2} {\text{H}}_{{{\text{H}}_{2} {\text{O}}}}$ ), dissolved inorganic carbon ( $\delta^{13} {\text{C}}_{\text{DIC}}$ ) and dissolved sulfate ( $\delta^{34} {\text{S}}_{{{\text{SO}}_{4} }}$ and $\delta^{18} {\text{O}}_{{{\text{SO}}_{4} }}$ ) to delineate sources of water, carbon and sulfur in several natural springs of the region. Our preliminary isotope data indicate that all springs are being recharged by modern precipitation. The oxygen isotope composition indicates that waters in thermal springs did not encounter the high temperatures required for O isotope exchange between the water and silicate/carbonate minerals, and/or the residence time of water in the aquifers was short due to high flow rates. The carbon isotopic composition of dissolved inorganic carbon and sulfur/oxygen isotopic composition of dissolved sulfate provide evidence of low-temperature water–rock interactions and various biogeochemical transformations these waters have undergone along their flow path.  相似文献   

13.
Suppose that ¯(x1),...,¯Z(xn). are observations of vector-valued random function ¯(x). In the isotropic situation, the sample variogram γ*(h) for a given lag h is $$\bar \gamma ^ * (h) = \frac{1}{{2N(h)}}\mathop \sum \limits_{s(h)} (\overline Z (x_1 ) - \overline Z (x_1 )) \overline {(Z} (x_1 ) - \overline Z (x_1 ))^T $$ where s(h) is a set of paired points with distance h and N(h) is the number of pairs in s(h).. For a selection of lags h1, h2, .... hk such that N (h1) > O. we obtain a ktuple of (semi) positive definite matrices $\bar \gamma ^ * (h_{ 1} ),. . . ., \bar \gamma ^ * (h_{ k} )$ . We want to determine an orthonormal matrix B which simultaneously diagonalizes the $\bar \gamma ^ * (h_{ 1} ),. . . ., \bar \gamma ^ * (h_{ k} )$ or nearly diagonalizes them in the sense that the sum of squares of offdiagonal elements is small compared to the sum of squares of diagonal elements. If such a B exists, we linearly transform $\overline Z (x)$ by $\overline Y (x) = B\overline Z (x)$ . Then, the resulting vector function $\overline Y (x)$ has less spatial correlation among its components than $\overline Z (x)$ does. The components of $\overline Y (x)$ with little contribution to the variogram structure may be dropped, and small crossvariograms fitted by straightlines. Variogram models obtained by this scheme preserve the negative definiteness property of variograms (in the matrix-valued function sense). A simplified analysis and computation in cokriging can be carried out. The principles of this scheme arc presented in this paper.  相似文献   

14.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

15.
Magnesiowüstite, (Mg0.08Fe0.88)O, and wüstite, Fe0.94O, were compressed to ~36?GPa at ambient temperature in the diamond anvil cell (DAC) at the Advanced Light Source. X-ray diffraction patterns were taken in situ in radial geometry in order to study the evolution of crystallographic preferred orientation through the cubic-to-rhombohedral phase transition. Under uniaxial stress in the DAC, {100}c planes aligned perpendicular to the compression direction. The {100}c in cubic became { $\left\{ {10\bar 14} \right\}$ }r in rhombohedral and remained aligned perpendicular to the compression direction. However, the {101}c and {111}c planes in the cubic phase split into { ${10{\bar{1}}4}$ }r and { ${11{\bar{2}}0}$ }r, and (0001)r and { ${10{\bar{1}}1}$ }r, respectively, in the rhombohedral phase. The { ${11{\bar{2}}0}$ }r planes preferentially aligned perpendicular to the compression direction while { ${10{\bar{1}}4}$ }r oriented at a low angle to the compression direction. Similarly, { ${10{\bar{1}}1}$ }r showed a slight preference to align more closely perpendicular to the compression direction than (0001)r. This variant selection may occur because the 〈 ${10{\bar{1}}4}$ r and [0001]r directions are the softer of the two sets of directions. The rhombohedral texture distortion may also be due to subsequent deformation. Indeed, polycrystal plasticity simulations indicate that for preferred { ${10{\bar{1}}4}$ }〈 ${1{\bar{2}}10}$ r and { ${11{\bar{2}}0}$ }〈 ${{\bar{1}}101}$ r slip and slightly less active { ${10{\bar{1}}1}$ }〈 ${{\bar{1}}2{\bar{1}}0}$ r slip, the observed texture pattern can be obtained.  相似文献   

16.
Orthorhombic post-perovskite CaPtO3 is isostructural with post-perovskite MgSiO3, a deep-Earth phase stable only above 100 GPa. Energy-dispersive X-ray diffraction data (to 9.4 GPa and 1,024 K) for CaPtO3 have been combined with published isothermal and isobaric measurements to determine its PVT equation of state (EoS). A third-order Birch–Murnaghan EoS was used, with the volumetric thermal expansion coefficient (at atmospheric pressure) represented by α(T) = α0 + α1(T). The fitted parameters had values: isothermal incompressibility, $ K_{{T_{0} }} $  = 168.4(3) GPa; $ K_{{T_{0} }}^{\prime } $  = 4.48(3) (both at 298 K); $ \partial K_{{T_{0} }} /\partial T $  = ?0.032(3) GPa K?1; α0 = 2.32(2) × 10?5 K?1; α1 = 5.7(4) × 10?9 K?2. The volumetric isothermal Anderson–Grüneisen parameter, δ T , is 7.6(7) at 298 K. $ \partial K_{{T_{0} }} /\partial T $ for CaPtO3 is similar to that recently reported for CaIrO3, differing significantly from values found at high pressure for MgSiO3 post-perovskite (?0.0085(11) to ?0.024 GPa K?1). We also report axial PVT EoS of similar form, the first for any post-perovskite. Fitted to the cubes of the axes, these gave $ \partial K_{{aT_{0} }} /\partial T $  = ?0.038(4) GPa K?1; $ \partial K_{{bT_{0} }} /\partial T $  = ?0.021(2) GPa K?1; $ \partial K_{{cT_{0} }} /\partial T $  = ?0.026(5) GPa K?1, with δ T  = 8.9(9), 7.4(7) and 4.6(9) for a, b and c, respectively. Although $ K_{{T_{0} }} $ is lowest for the b-axis, its incompressibility is the least temperature dependent.  相似文献   

17.
Intergrowth of clinopyroxenes (augite, A) and pyroxenoids (Fe-rhodonite and pyroxferroite, Pxo) was observed by transmission electron microscopy. The following orientation relationship was found: (001)Pxo is parallel to \((1\mathop {\bar 1}\limits^ + \bar 1)_{\text{A}}\) and \([1\bar 10]_{Pxo}\) is parallel to [011]A. This relationship can be explained by similarities of the structures of clinopyroxenes and pyroxenoids. It contradicts a suggestion based on structural arguments of Koto et al. (1976). Chain periodicity faults parallel to \((1\mathop {\bar 1}\limits^ + \bar 1)\) are also observed in pure clinopyroxenes.  相似文献   

18.
Metamorphic biotites examined by transmission electron microscopy contain planar defects on the (001) plane, superlattices, twins and a microstructure causing streaking of k≠3n rows. Analysis of the fringe contrast shows that the fault vectors associated with the planar defects are either R 1=±1/3 [010], R 2=±1/6 [310] or R 3=±1/6 [3 \(\bar 1\) 0]. Structural considerations indicate that a stacking fault R 1, R 2 or R 3 is most likely to exist in the octahedral layer rather than the potassium layer. The result of such a fault on a unit layer of mica is effectively to rotate it through ±120° about c* (equivalent to the common mica twin law). These stacking faults can provide the mechanism for producing the ±120° rotations associated with the common mica polytypes. Furthermore, many of the observed microstructures can be generated by these stacking faults.  相似文献   

19.
The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is intended to study the seepage properties of fractured rocks under different confining pressures. In order to do this, we designed and manufactured a water flow apparatus that can be connected to the electro-hydraulic servo-controlled test system MTS815.02, which provides loading and exhibits external pressures in the test. Using this apparatus, we tested fractured mudstone, limestone and sandstone specimens and obtained the relationship between seepage properties and variations in confining pressure. The calculation of the seepage properties based on the collection of water flow and confining pressure differences is specifically influenced by non-Darcy flow. The results show that: (1) The seepage properties of fractured rocks are related to confining pressure, i.e. with the increase of confining pressure, the permeability $ k $ decreases and the absolute value of non-Darcy flow coefficient $ \beta $ increases. (2) The sandstone coefficients $ k $ and $ \beta $ range from $ 1.03 \times 10^{ - 18} $ to $ 1.53 \times 10^{ - 17} $  m2 and $ - 1.13 \times 10^{17} $ to $ - 2.35 \times 10^{18} $  m?1, respectively, and exhibit a greater change compared to coefficients of mudstone and limestone. (3) From the regression analysis of experimental data, it is concluded that the polynomial function is a better fit than the power and logarithmic functions. The results obtained can provide an important reference for understanding the stability of rock surrounding roadways toward prevention of underground water gushing-out, and for developing underground resources (e.g. coal).  相似文献   

20.
Connectivity patterns of heterogeneous porous media are important in the estimation of groundwater residence time distributions (RTDs). Understanding the connectivity patterns of a hydraulic conductivity ( \(K\) ) field often requires knowledge of the entire aquifer, which is not practical. As such, the method used to estimate unknown \(K\) values using known \(K\) values is important. This study investigates how varying levels of conditioning data and four simulation techniques, one multi-Gaussian and three multi-point, are able to recreate key \(K\) field features and connectivity patterns of a synthetic two-dimensional bimodal distributed ln( \(K\) ) field with highly connected high \(K\) features. These techniques are then assessed in the context of RTD estimation. It was found that the multi-Gaussian technique presented a bias towards earlier travel times with increased conditioning data. This was due to the inability of the method to recreate multiple scales of connecting features. Of the multi-point methods investigated, the facies method was unable to predict early arrival times. The use of a continuous variable training image produced good fits to the observed residence time distribution with a high number of conditioning points. The ability of the methods to predict the shape of residence time distributions appears to be related to their ability to reproduce the connection patterns of higher \(K\) features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号