首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single crystal of scolecite, CaAl2Si3O10· 3H2O, was studied by X-ray diffraction methods at room temperature. The intensities were measured with MoKα radiation (λ=0.71069?Å) in a complete sphere of reflection up to sinθ/λ=0.9?Å?1. The structure was refined in the pseudo-orthorhombic setting of space group F1d1 instead of the conventional setting Cc for better comparison with natrolite (Fdd2). The cell parameters are: a=18.502(1)?Å, b=18.974(2)?Å, c=6.525(1)?Å, β=90.615(7)°, V=2290.6(3)?Å3, Z=8. A refinement of high-order diffraction data yielded residuals of R(F)=0.9%, R w (F)=0.9%, GoF=1.73 for 1831 high-angle reflections (0.7≤sinθ/λ≤0.9?Å?1) and R(F)=1.2%, R w (F)=1.4%, GoF=3.22 for all 3478 independent reflections. In comparison with natrolite, the replacement of 2 Na+ by 1 Ca2+ and 1 H2O leads to a reduction of symmetry from Fdd2 to F1d1. Each general atomic position in natrolite (except of Na) splits into two crystallographically independent positions in scolecite. The T?O distances and T?O?T angles of these two sites differ distinctly from each other due to the influence of the calcium ions on the framework. An unexpected result of our detailed analysis of the data is that the additional water molecule (O7) disturbs the symmetry of the framework to a greater extent than the replacement of Na+ by Ca2+. As a comparison of the displacement parameters indicates, the bonds within the tetrahedral framework and to the extraframework cations are stronger in scolecite than in natrolite. The isotropic U(equ) values of the framework atoms and extraframework cations are about 10% smaller in scolecite compared to natrolite. The same tendency is shown by the analysis of the internal vibrational amplitudes ΔU. The corresponding force constants are in the range of F=358 to 3367?Nm?1 for the T?O bonds in scolecite (in natrolite: F=354 to 824?Nm?1). The values of the force constants which determine the vibrations of the Ca ions and water molecules against the framework oxygen atoms lie in the range of F=33 to 1757?Nm?1 (in natrolite: F=57 to 293?Nm?1).  相似文献   

2.
A single crystal of natrolite, Na2Al2Si3O10 ·2H2O (space group Fdd2), was studied by X-ray diffraction methods at room temperature. The intensities were measured in a complete sphere of reflection up to sinΘ/ λ=0.903 Å?1. A refinement of high-order diffraction data yielded residuals of R/(F)=0.9%, Rw(F)=0.8%, GoF=1.40 for 1856 high-angle reflections (0.7≤sinΘ/ λ≤0.903 Å?1) and R(F)=1.0%, Rw(F)=1.2%, GoF=3.07 for all 3471 independent reflections in the complete sphere of reflection. The X-X method was used to calculate deformation electron densities (DED) in natrolite. Within all tetrahedra, residual electron density-was found in the T-O bond directions indicating a considerable covalent contribution to the chemical bond. The range of the interatomic peak heights was from 0.19 to 0.34 e/Å3 in the SiO4 tetrahedra and from 0.11 to 0.23 e/Å3 in the AlO4 tetrahedron. The ionic contribution to the chemical bond manifests itself in the displacement of the peaks towards the oxygen atoms. Charge displacement due to interaction of nonframework cations with framework oxygen atoms as well as electron densities attributable to the lone pair orbitals in the water molecule have been observed.  相似文献   

3.
Raman spectra of Ni2SiO4 spinel (O h 7 Z=8) have been measured in the temperature range from 20 to 600 °C and the Raman active vibrations (A 1g +E g +3F 2g ) have been assigned. A calculation of the optically active lattice vibrations of this spinel has been made, assuming a potential function which combines general valence and short range force constants. The values of the force constants at 20 and 500 °C have been calculated from the vibrational frequencies of the observed Raman spectra and infrared (IR) spectral data. The Ni spinel at 20 °C has a prominently small Si-O bond stretching force constant of K(SiO)=2.356 ~ 2.680 md/Å and a large Ni-O bond stretching constant of K(NiO)=0.843 ~ 1.062 md/Å and these force constants at 500 °C decrease to K(SiO)=2.327 ~ 2.494 md/Å and K(NiO)=0.861 ~ 0.990 md/Å. The Si-O bond is noticeably weakened at high temperatures, despite the small thermal expantion from 1.657 Å (20 °C) to 1.660 Å (500 °C). These changes of the interatomic force constants of the spinel at high temperatures are in accord with the thermal structure changes observed by X-ray diffraction study. The weakened Si-O bond is consistent with the fact that Si atoms in the spinel lattice can diffuse at significant rates at elevated temperature.  相似文献   

4.
{M[UO2¦AsO4]2 · nH2O} with M=Cu2+, Co2+, Ni2+ has been synthesized from reagent grade chemicals and by ion exchange of trögerite {HUO2AsO4 · 4 H2O}. Synthetic meta-zeunerite (M=Cu2+), meta-kirchheimerite (M=Co2+) and nickel-uranylarsenate are all tetragonal. The cell parameters determined from Guinier-Hägg diffraction data for {Cu[UO2¦AsO4]2 · 8 H2O} are a=b=7.10 Å and c=17.42 Å, with Z=2 and the measured density 3.70 g cm?3. The cell parameters for {Co[UO2¦AsO4]2 · 7 H2O} and {Ni[UO2¦AsO4]2 · 7 H2O} are a=b=20.25 Å and c=17.20 Å, with Z=16 and the measured density 3.82 and 3.74 g cm?3, respectively. The solubility products for synthetic Cu-, Co- and Ni-uranylarsenate at 25° C are 10?49.20, 10?45.34 and 10?45.10, respectively. The zeta-potential remains negative between pH=2 and pH=9 and is strongly affected by the presence of different cations.  相似文献   

5.
The composition and structure of synthetic (Na,K)-richterites have been characterized by EMP, HRTEM, XRD and FTIR methods. Despite the fact that the syntheses were done on bulk compositions along the richterite-K-richterite binary, EMP analyses and FTIR spectra indicate that the amphiboles are not simple solid solutions of the two richterite endmembers richterite and K-richterite alone, but tremolite and Mg-cummingtonite components are also present in considerable amounts. HRTEM observations show that the amphiboles are structurally well ordered. Only a very few chain multiplicity faults are present. XRD examination reveals lattice parameters of 9.9055 Å, 17.9844 Å, 5.2689 Å and 104.212° for richterite and 10.0787 Å, 17.9877 Å, 5.2715 Å and 104.878° for K-richterite endmembers. The unit cell volumes are 909.90 Å3 and 923.61 Å3 for richterite and K-richterite, respectively. The lattice parameters a and β for K-richterite are considerably larger than those published previously implying that those were not determined for pure K-richterite. The positions of the characteristic OH-stretching vibrations in the IR for sodium-potassium (3729.8–3734.8 cm?1) and vacancies (3671.1–3675.4 cm?1) on the A-site are in agreement with earlier determinations. Using synthetic tremolite as a standard the vacancy concentration on the A-site of the synthetic (Na,K)-richterites was determined quantitatively by FTIR-spectroscopy. The OH-stretching vibration of this synthetic tremolite is at 3674.5 cm?1. It is assigned to a local coordination with 3 Mg (2 M1+M3) as nearest neighbors and with 2 Ca (M4) as next nearest neighbors. A well resolved band with a smaller intensity is located at 3669.2 cm?1, which is attributed to a configuration including Ca+Mg on M4 instead of only Ca.  相似文献   

6.
A new potassium uranyl selenate compound K(UO2)(SeO4)(OH)(H2O) has been synthesized for the first time using the technique of evaporation from water solution. Its crystal structure has been solved by direct methods (monoclinic, P21/c,a = 8.0413(9) Å, b = 8.0362(9) Å, c = 11.6032(14) Å, β = 106.925(2)°, V = 717.34(14) Å3) and refined to R 1 = 0.0319 (wR 2 = 0.0824) for 1285 reflections with |F 0| > 4σ F . The structure consists of [(UO2(SeO4)(OH)(H2O)]? chains extending along axis b. In the chains, the uranyl pentagonal bipyramids are linked via bridged hydroxyl anions and tetrahedral oxoanions [SeO4]2?. Potassium ions are situated between these chains. No chains of that type have been observed in uranyl compounds earlier, but they had been detected in the structures of butlerite, parabutlerite, uklonskovite, fibroferrite, and a number of synthetic compounds.  相似文献   

7.
The thermal expansion of anhydrite, CaSO4, has been measured from 22° to 1,000° C by X-ray diffraction, using the Guinier-Lenné heating powder camera. The heating patterns were calibrated with Guinier-Hägg patterns at 25° C, using quartz as internal standard. Heating experiments were run on natural anhydrite (Bancroft, Ontario), which at room temperature has lattice constants in close agreement with those of synthetic material. The orthorhombic unit cell at 22° C (space group Amma) has a=7.003 (1) Å, b=6.996 (2) Å and c=6.242 (1) Å, V=305.9 (2) Å3. At room temperature, the thermal expansion coefficients α and β (α in °C?1×104, β in °C?2×108) are for a, 0.10, ?0.69; for b, 0.08, 0.19; for c, 0.18, 1.60; for V, 0.37, 1.14. Second-order coefficients provide an excellent fit over the whole range to 1,000° C.  相似文献   

8.
The crystal structure of fornacite Pb2(Cu,Fe)[CrO4(As,P)O4OH] from the Berezovskii deposit (Central Urals, Russia) was refined by X-ray powder diffraction data using the Rietveld method. Fornacite is monoclinic, space group P21/c, the unit cell dimensions are a = 8.09015(12), b = 5.90913(9), c = 17.4839(2) Å, β = 109.99(2), V = 785.5(3) Å3, and Z = 4. The structure was refined in the isotropic approximation of the atomic displacement parameters up to R p = 0.0516, R wp = 0.0692, R B = 0.0229, and R F = 0.0200. The fornacite structure is similar to that of minerals of the brackebuschite-group and consists of heteropolyhedral chains, built by the columns of edge-sharing Cu2+O6 octahedra connected with isolated Cr6+O4 and As5+O4 tetrahedra. The chains are linked by ninefold Pb2+ polyhedra.  相似文献   

9.
Auriacusite, ideally Fe3+Cu2+AsO4O, is a new arsenate mineral (IMA2009–037) and the Fe3+ analogue of olivenite, from the Black Pine mine, 14.5 km NW of Philipsburg, Granite Co., Montana, USA. It occurs lining quartz vughs and coating quartz crystals and is associated with segnitite, brochantite, malachite, tetrahedrite and pyrite. Auriacusite forms fibrous crystals up to about 5?µm in width and up to about 100?µm in length, which are intergrown to form fibrous mats. Individual crystals are a brownish golden yellow, whilst the fibrous mats are ochreous yellow. The crystals have a silky lustre and a brownish yellow streak. Mohs hardness is about 3 (estimated). The fracture is irregular and the tenacity is brittle. Auriacusite crystals are biaxial (+), with α?=?1.830(5), β?=?1.865(5) and γ?=?1.910(5), measured using white light, and with 2V meas.?=?83(3)º and 2V calc. = 84.6º. Orientation: X?=?a, Y?=?c, Z?=?b. Crystals are nonpleochroic or too weakly so to be observed. The empirical formula (based on 5 O atoms) is (Fe 1.33 3+ Cu0.85Zn0.03)Σ2.21(As0.51Sb0.27Si0.04?S0.02Te0.01)Σ0.85O5. Auriacusite is orthorhombic, space group Pnnm, a?=?8.6235(7), b?=?8.2757(7), c?=?5.9501(5) Å, V?=?424.63(6) Å3, Z?=?4. The five strongest lines in the powder X-ray diffraction pattern are [d obs in Å / (I) / hkl]: 4.884 / (100) / 101, 001; 2.991 / (92) / 220; 2.476 / (85) / 311; 2.416 / (83) / 022; 2.669 / (74) / 221. The crystal structure was solved from single-crystal X-ray diffraction data utilising synchrotron radiation and refined to R 1?=?0.1010 on the basis of 951 unique reflections with F o?>?4σF. Auriacusite is identified as a member of the olivenite group with Fe3+ replacing Zn2+ or Cu2+ in trigonal bipyramidal coordination. Evidence suggests that auriacusite is an intermediate member between olivenite and an as yet undescribed Fe3+Fe3+-dominant member. The name is derived from the Latin auri (golden yellow) and acus (needle), in reference to its colour and crystal morphology.  相似文献   

10.
Polycrystalline material of a sulfate apatite with chemical composition Na6Ca4(SO4)6F2 or (Na2Ca4)Na4(SO4)6F2 has been synthesized by solid state reactions. Basic crystallographic data are as follows: hexagonal symmetry, a?=?9.3976(1) Å, c?=?6.8956(1) Å, V?=?527.39(1) Å3, Z?=?1, space group P63/m. For structural investigations the Rietveld method was employed. Thermal expansion has been studied between 25 and 600 °C. High temperature (HT) powder diffraction data as well as thermal analysis indicate that the apatite-type compound undergoes a reconstructive phase transition in the range between 610 and 630 °C. Single-crystals of the HT-polymorph were directly grown from the melt. Structural investigations based on single-crystal diffraction data of the quenched crystals performed at ?100 °C showed orthorhombic symmetry (space group Pna21) with a?=?12.7560(8) Å, b?=?8.6930(4) Å, c?=?9.8980(5) Å, V?=?1097.57(10) Å3 and Z?=?2. Unit cell parameters for a quenched polycrystalline sample of the HT-form obtained at ambient conditions from a LeBail-fit are as follows: a?=?12.7875(1) Å, b?=?8.7255(1) Å, c?=?9.9261(1) Å, V?=?1107.53(2) Å3. The lattice parameters of both modifications are related by the following approximate relationships: a HT?≈?2c RT, b HT?≈?-(½a RT?+?b RT), c HT?≈?a RT. The HT-modification is isotypic with the corresponding potassium compound K6Ca4(SO4)6F2. The pronounced disorder of the sulphate group even at low temperatures has been studied by maximum entropy calculations. Despite the first-order character of the transformation clusters of sulfate groups surrounding the fluorine anions can be identified in both polymorphs. Each of the three next neighbor SO4-tetrahedra within a cluster is in turn surrounded by 8–9 M-cations (M: Na,Ca) defining cage-like units. However, in the apatite structure the corresponding three tricapped trigonal prisms are symmetry equivalent. Furthermore, the central fluorine atom of each cluster is coordinated by three next M-neighbors (FM3-triangles), whereas in the HT-polymorph a four-fold coordination is observed (FM4-tetrahedra).  相似文献   

11.
The crystal structure of mangan-neptunite, a manganese analogue of neptunite, has been refined in two space groups (Cc and C2/c). The mineral is monoclinic, with the correct space group Cc; the unit-cell dimensions are: a = 16.4821(6), b = 12.5195(4), c = 10.0292(3) Å, β = 115.474(1)°, and V = 1868.31 Å3. The crystal structure has been refined to R 1 = 0.0307 (wR 2 = 0.0901) on the basis of 4892 observed reflections with |F hkl | ≥ 4σ|F hkl |. The most plausible acentric model is caused by the Ti- and (Fe, Mn, Mg)-ordering in the structure. Ti-octahedrons are strongly distorted and consist of short bond Ti-O (1.7 Å), one long bond (2.2 Å), and four equal bonds (2.0 Å). Fe-octahedrons are regularly shaped, with all Fe-O bonds being approximately identical.  相似文献   

12.
Experiments on the join Al2SiO5-“Mn2SiO5” of the system Al2O3-SiO2-MnO-MnO2 in the pressure/temperature range 10–20 kb/900–1050° C with gem quality andalusite, Mn2O3, and high purity SiO2 as starting materials and using /O2-buffer techniques to preserve the Mn3+ oxidation state had following results: At 20 kb/1000°C orange-yellow kyanite mixed crystals are formed. The kyanite solid solubility is limited at about (Al1.88Mn 0.12 3+ )SiO5 and, thus, equals approximately that on the join Al2SiO5-“Fe2SiO5” (Langer and Frentrup, 1973) indicating that there is no Jahn-Teller stabilisation of Mn3+ in the kyanite matrix. 5 mole % substitution causes the kyanite lattice constants a o, b o, c o, and V o to increase by 0.015, 0.009, 0.014 Å, and 1.6 Å3, resp., while α, β, γ, remain unchanged. Between 10 and 18 kb/900°C, Mn3+-substituted, strongly pleochroitic (emeraldgreen-yellow) andalusitess (viridine) was obtained. At 15 kb/900°C, the viridine compositional range is about (Al1.86Mn 0.14 3+ )SiO5-(Al1.56Mn 0,44 3+ )SiO5. Thus, Al→Mn3+ substitutional degrees are appreciably higher in andalusite than in kyanite, proving a strong Jahn-Teller effect of Mn3+ in the andalusite structure, which stabilises this structure type at the expense of kyanite and sillimanite and, thus, enlarges its PT-stability range extremely. 17 mole % substitution cause the andalusite constants a o, b o, c o, and V o to increase by 0.118, 0.029, 0.047 Å and 9.4 Å3, resp. At “Mn2SiO5”-contents smaller than about 7 mole %, viridine coexists with Mn-poor kyanite. At “Mn2SiO5”-concentrations higher than the maximum kyanite or viridine miscibility, braunite (tetragonal, ideal formula Mn2+Mn3+[O8/Si04]), pyrolusite and SiO2 were found to coexist with the Mn3+-saturated ky ss or and ss, respectively. In both cases, braunites were Al-substituted (about 1 Al for 1 Mn3+). Pure synthetic braunites had the lattice constants a o 9.425, c o, 18.700 Å, V o 1661.1 Å3 (ideal compn.) and a o 9.374, c o 18.593 Å3, V o 1633.6 Å3 (1 Al for 1 Mn3+). Stable coexistence of the Mn2+-bearing phase braunite with the Mn4+-bearing phase pyrolusite was proved by runs in the limiting system MnO-MnO2-SiO2.  相似文献   

13.
The crystal structure (R = 0.0194) of arcanite β-K2SO4 was studied on a single crystal from exhalations of the Arsenatnaya fumarole, Tolbachik Volcano (Kamchatka, Russia). The mineral crystallizes at a temperature of ≥350–430°C and associates with langbeinite, aphthitalite, hematite, tenorite, johillerite, and others. Arcanite is orthorhombic, Pnma, a = 7.4763(2) Å, b = 5.77262(16) Å, c = 10.0630(3) Å, V = 434.30(2) Å3, Z = 4. Its structure contains isolated SO4 tetrahedra, whereas K cations center ten- and nine-fold polyhedra.  相似文献   

14.
Elastic behavior and pressure-induced structural evolution of synthetic boron-mullite “Al5BO9” (a = 5.678(2) Å, b = 15.015(4) Å and c = 7.700(3) Å, space group Cmc21, Z = 4) were investigated up to 7.4 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase transition or anomalous compressional behavior occurred within the investigated P range. Fitting the P–V data with a truncated second-order (in energy) Birch-Murnaghan Equation-of-State (BM-EoS), using the data weighted by the uncertainties in P and V, we obtained: V 0 = 656.4(3) Å3 and K T0 = 165(7) GPa (β V0 = 0.0061(3) GPa?1). The evolution of the Eulerian finite strain versus normalized stress (f EF E plot) leads to an almost horizontal trend, showing that a truncated second-order BM-EoS is appropriate to describe the elastic behavior of “Al5BO9” within the investigated P range. The weighted linear regression through the data points gives: F E(0) = 159(11) GPa. Axial compressibility coefficients yielded: β a  = 1.4(2) × 10?3 GPa?1, β b  = 3.4(4) × 10?3 GPa?1, and β c  = 1.7(3) × 10?3 GPa?1 (β a :β b :β c  = 1:2.43:1.21). The highest compressibilities observed in this study within (100) can be ascribed to the presence of voids represented by five-membered rings of polyhedra: Al1–Al3–Al4–Al1–Al3, which allow accommodating the effect of pressure by polyhedral tilting. Polyhedral tilting around the voids also explains the higher compressibility along [010] than along [001]. The stiffer crystallographic direction observed here might be controlled by the infinite chains of edge-sharing octahedra running along [100], which act as “pillars”, making the structure less compressible along the a-axis than along the b- and c-axis. Along [100], compression can only be accommodated by deformation of the edge-sharing octahedra (and/or by compression of the Al–O bond lengths), as no polyhedral tilting can occur. In addition, a comparative elastic analysis among the mullite-type materials is carried out.  相似文献   

15.
The paper reports new findings of avdoninite from deposits of active fumaroles in the Second Scoria Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik Volcano, Kamchatka Peninsula, Russia. The crystal structure of the mineral has been determined for the first time, which has allowed reliable determination of its space group and unit cell dimensions, refinement of its formula K2Cu5-Cl8(OH)4 · 2H2O, and correct indexing of its X-ray powder diffraction pattern. Avdoninite is monoclinic, space group P21/c, a = 11.592(2), b = 6.5509(11), c = 11.745(2) Å, β = 91.104(6)°, V = 891.8(3) Å3, Z = 2. The crystal structure of this mineral has been determined on a single crystal R 1 [F > 4σ (F)] = 0.063. It is based on sheets of copper–oxo-chloride complexes [Cu5Cl8(OH)4]2– parallel to (100). The K+ cation and H2O molecules are interlayers.  相似文献   

16.
Two samples of hydroxyl-clinohumite, sample SZ0407B with approximate composition Mg8.674(14)Fe0.374(4)(Si0.99(1)O4)4(OH)2 and sample SZ0411B with composition Mg9(SiO4)4(OH)2, were synthesized at 12 GPa and 1,250 °C coexisting with olivine. Unit-cell parameters determined by single-crystal X-ray diffraction are given as follows: a = 4.7525(4) Å, b = 10.2935(12) Å, c = 13.7077(10) Å, α = 100.645(9)°, V = 659.04(9) Å3 for SZ0407B, and a = 4.7518(6) Å, b = 10.2861(12) Å, c = 13.7008(9) Å, α = 100.638(9)°, V = 658.15(9) Å3 for SZ0411B. Single-crystal X-ray intensity data were collected for crystal structure refinements of both samples. Relative to the pure-Mg sample, Fe decreases M3–OH bond lengths by ~0.010(3) Å, consistent with some ferric iron ordering into M3. Raman spectroscopy shows two strong bands in the lattice-mode region at 650 and 690 cm?1 in the Fe-bearing sample, which are not observed in the pure-Mg sample. Spectra in the H2O region show at least five bands, which are deconvolved into seven distinct O–H-stretching modes. Thermal expansion measurements were carried out for both samples from 153 to 787 K by single-crystal X-ray diffraction. The average a-, b-, c-axial and volumetric thermal expansion coefficients (10?6 K?1) are 10.5(1), 12.3(2), 12.5(2) and 34.9(5) for SZ0407B, respectively, and 11.1(1), 12.6(3), 13.7(3), 36.8(6) for SZ0411B, respectively. After heating, the unit-cell parameters were refined again for each sample at ambient condition, and no significant changes were observed, indicating no significant oxidation or dehydration during the experiment. For the DHMS phases along the brucite–forsterite join, linear regression gives a systematic linear decrease in expansivity with increasing density. Further, substitution of ferrous iron into these structures decreases thermal expansivity, making the Fe-bearing varieties slightly stiffer.  相似文献   

17.
Synthetic, flux-grown uvarovite, Ca3Cr2 [SiO4]3, was investigated by optical methods, electron microprobe analysis, UV-VIS-IR microspectrometry, and luminescence spectroscopy. The crystal structure was refined using single-crystal X-ray CCD diffraction data. Synthetic uvarovite is optically isotropic and crystallizes in the “usual” cubic garnet space group Ia3¯d [a=11.9973 Å, Z=8; 21524 reflections, R1=2.31% for 454 unique data and 18 variables; Cr–O=1.9942(6), Si–O=1.6447(6), Ca–Oa=2.3504(6), Ca–Ob= 2.4971(6) Å]. The structure of Ca3Cr2[SiO4]3 complies with crystal-chemical expectations for ugrandite group garnets in general as well as with predictions drawn from “cubically averaged” data of non-cubic uvarovite–grossular solid solutions (Wildner and Andrut 2001). The electronic absorption spectra of Cr3+ in trigonally distorted octahedra of synthetic uvarovite were analyzed in terms of the superposition model (SM) of crystal fields. The resulting SM and interelectronic repulsion parameters are =9532 cm?1, =4650 cm?1, power law exponent t 4=6.7, Racah B35=703 cm?1 at 290 K (reference distance R 0=1.995 Å; fixed power law exponent t 2=3 and spin-orbit parameter ζ=135 cm?1). The interelectronic repulsion parameters Racah B 55=714 cm?1 and C=3165 cm?1 were extracted from spin-forbidden transitions. This set of SM parameters was subsequently applied to previously well-characterized natural uvarovite–grossular solid solutions (Andrut and Wildner 2001a; Wildner and Andrut 2001) using their extrapolated Cr–O bond lengths to calculate the energies of the spin-allowed bands. These results are in very good agreement with the experimentally determined band positions and indicate the applicability of the superposition model to natural 3d N prevailing systems in geosciences. Single-crystal IR absorption spectra of synthetic uvarovite in the region of the OH-stretching vibration exhibit one isotropic absorption band at 3508 cm?1 at ambient conditions, which shifts to 3510 cm?1 at 77 K. This band is caused by structurally incorporated hydroxyl groups via the (O4H4)-hydrogarnet substitution. The water content, calculated using an integral extinction coefficient ?=60417 cm?2 l mol?1, is c H2O=33 ppm.  相似文献   

18.
Cryolite, Na3AlF6[ = 2Na+(Na0.5 +Al0.5 3+)F3] is a mixed fluoride perovskite, in which the corner-sharing octahedral framework is formed by alternating [NaF6] and [AlF6] octahedra and the cavities are occupied by Na+ ions. At 295 K, it is monoclinic (α phase), space group P2 1/n with a = 5.4139 (7), b = 5.6012 (5) and c = 7.7769 (8) Å and β = 90.183 (3)°, Z = 2. A high temperature single crystal X-ray diffraction study in the range 295–900 K indicates a fluctuation-induced first-order phase transition from monoclinic to orthorhombic symmetry at T 0 ~ 885 K, in contrast to a previous report that it becomes cubic at ~823 K. The space group of the high temperature β phase is Immm with a = 5.632 (4), b = 5.627 (3) and c = 7.958 (4) Å, Z = 2 at 890 K. Above T 0, the coordination number of the Na+ ion in the cavity increases from eight to twelve and the zigzag Na1 — Al octahedral chains parallel to c become straight with the Na1-F-Al angle = 180 °. The phase transition is driven by two coupled primary order parameters. The first corresponds to the rotation of the nearly rigid [AlF6] group and transforms according to the Γ 4 + irreducible representation of Immm. Coupled to the [AlF6] rotation is a second primary order parameter corresponding to the displacement of the Na2+ ion in the cavity from its equilibrium position. This order parameter transforms according to the X 3 + irreducible representation of Immm. Following Immm → P2 1 /n phase transition, four equivalent domains of P2 1/n are determined relative to Immm, which are in an antiphase and/or twin relationship. The abrupt shortening of the octahedral Al-F and Na-F bonds and a sudden change in orientations of the atomic thermal vibration ellipsoids above T 0 indicate a crossover from displacive to an order-disorder mechanism near the transition temperature. The β phase is interpreted as a dynamic average of four micro-twin and -antiphase domains of the a phase. This view is consistent with the entropy of phase transition, ΔStrans (11.43 JK?1 mol?1) calculated from heat capacity measurements (Anovitz et al. 1987), which corresponds closely to R ln4 (11.53 JK?1 mol?1), where 4 is the number of domains formed during the phase transition. The dynamic nature of the β phase is independently confirmed from a considerable narrowing of the 27Al nuclear magnetic resonance (NMR) line-shape above T 0 (Stebbins et al. 1992).  相似文献   

19.
The rare phosphate—nevadaite has been found at Kara-Chagyr (Batken region, Kyrgyzstan) in a zone of alteration of vanadium bearing “black shales”. It occurs as blue crusts of spherulitic aggregates of tiny tabular crystals (0.1–10 μm). It is associated with metahewettite, hummerite, carnotite, minyulite, fluellite, crandallite, variscite, and woodhouseite. Optical properties: n = 1.542–1.555, D meas (for aggregates) = 2.58(1) g/cm3, D calc = 2.582 g/cm3. The most intense X-ray powder reflections are as follows: [d/n, Å, (I meas), (hkl)]: 9.54 (80) (020), 6.03 (100) (200), 5.61 (100) (130), 3.91 (60) (310), 3.41 (80) (041), 2.982 (100) (241), 2.804 (60) (331), 2.672 (70) (061), 1.845 (60) (352) 1.507 (70) (243). Calculated cell dimensions are: a = 12.072(10) Å, b = 18.958(15) Å, c = 4.969(5) Å, α = β = γ = 90°, V = 1137.2 Å3. Electron microprobe analyses gives (wt %): (observed (average of 8 analyses); (calculated for 22H2O)): P2O5 34.69 (31.85), SiO2 0.25 (0.24), Al2O3 25.61 (23.50), V2O 5.58 (5.13), Fe2O3 0.48 (0.46), MnO 0.03 (0.03), CuO 10.79 (9.90), ZnO 0.69 (0.65), CaO 0.18 (0.15), MgO 0.17 (0.17), K2O 0.08 (0.08), F 7.40 (6.79), H2O 17.16 (by diff.) (23.90), ?F2 =O \(\bar 3\).11 (\(\bar 2\).86), total 100.00 (100.00).The crystal-chemical formula of the mineral is (Cu 2.2 +2 2.03V 1.21 +3 Al0.15Zn0.14Fe0.10Mg0.07Ca0.05K0.03Mn0.01)6.00(Al8.00(P7.93Si0.07O32)F6.32(OH)2.98 · 22(H2O) for the ideal number of water molecules. Nevadaite from Kara-Chagyr differs from that from the type locality, Gold Quarry (Nev., USA), by its lower Al content. The IR-spectrum, and microphotographs of nevadaite and associated minerals are given.  相似文献   

20.
Arsenic (As) and fluoride (F?) in groundwater are increasing global water quality and public health concerns. The present study provides a deeper understanding of the impact of seasonal change on the co-occurrence of As and F?, as both contaminants vary with climatic patterns. Groundwater samples were collected in pre- and post-monsoon seasons (n = 40 in each season) from the Brahmaputra flood plains (BFP) in northeast India to study the effect of season on As and F? levels. Weathering is a key hydrogeochemical process in the BFP and both silicate and carbonate weathering are enhanced in the post-monsoon season. The increase in carbonate weathering is linked to an elevation in pH during the post-monsoon season. A Piper diagram revealed that bicarbonate-type water, with Na+, K+, Ca2+, and Mg2+ cations, is common in both seasons. Correlation between Cl? and NO3 ? (r = 0.74, p = 0.01) in the post-monsoon indicates mobilization of anthropogenic deposits during the rainy season. As was within the 10 µg L?1 WHO limit for drinking water and F? was under the 1.5 mg L?1 limit. A negative correlation between oxidation reduction potential and groundwater As in both seasons (r = ?0.26 and ?0.49, respectively, for pre-monsoon and post-monsoon, p = 0.05) indicates enhanced As levels due to prevailing reducing conditions. Reductive hydrolysis of Fe (hydr)oxides appears to be the predominant process of As release, consistent with a positive correlation between As and Fe in both seasons (r = 0.75 and 0.73 for pre- and post-monsoon seasons, respectively, at p = 0.01). Principal component analysis and hierarchical cluster analysis revealed grouping of Fe and As in both seasons. F? and sulfate were also clustered during the pre-monsoon season, which could be due to their similar interactions with Fe (hydr)oxides. Higher As levels in the post-monsoon appears driven by the influx of water into the aquifer, which drives out oxygen and creates a more reducing condition suitable for reductive dissolution of Fe (hydr)oxides. An increase in pH promotes desorption of As oxyanions AsO4 3? (arsenate) and AsO3 3? (arsenite) from Fe (hydr)oxide surfaces. Fluoride appears mainly released from F?-bearing minerals, but Fe (hydr)oxides can be a secondary source of F?, as suggested by the positive correlation between As and F? in the pre-monsoon season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号