首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Absorption bands are determined in polarized optical spectra of vivianite Fe3(PO4)2·8H2O, recorded at room and low temperatures. These bands are caused by spin-allowed d-d transitions in structurally nonequivalent Fe A 2+ (~11000 cm-1 (γ-polarization) (and) ~12000 cm-1 (β-polarization)) (and) Fe B 2+ (~8400 cm-1 (γ, α-polarization) and ~11200 cm-1 (α-polarization)) ions. A charge transfer band (CTB) Fe B 2+ +Fe B 3+ →Fe B 2+ +Fe B 2+ (~15000 cm-1) also determined, has polarizing features giving evidence of a change in the Fe B 2+ -Fe B 3+ bond direction, when compared with Fe B 2+ -Fe B 2+ . Bands of exchange-coupled Fe3+-Fe3+ pairs (~19400, ~20400, ~21300 and ~21700 cm-1) which appear on oxidation of Fe2+ in paired Fe B octahedra are also characterized.  相似文献   

2.
57Fe Mössbauer spectra are presented for synthetic cation-deficient Fe2TiO4 and FeCr2O4 spinel particles (<1μm) at various temperatures. The spectra of ferrimagnetic cation-deficient Fe2TiO4 show characteristic features due to relaxation because of superparamagnetism and spin relaxation in the temperature range 5–294 K. At 5 K and 78 K, a superposition of at least two sextets is observed which appear to arise from Fe3+ onA-sites (Fe A 3+ andB-sites (Fe B 3+ ) of the spinal lattice with magnetic hyperfine fields at 5 K ofB hf ((Fe B 3+ )≈47.5 T andB hf (Fe B 3+ )≈51.0 T, respectively. Cation-deficient FeCr2O4 particles reveal at 78 K a fieldB hf (Fe3+)≈46.9 T and exhibit relaxation spectra as a consequence of superparamagnetism in the temperature range 80 K - ~300 K. At 294 K, quadrupole splitting Δ(Fe A 3+ )=0.92 mm/s and isomer shift δ(Fe A 3+ )=0.29 mm/s (relative to metallic Fe) are measured. For both compounds the magnetic hyperfine fieldsB hf are discussed in terms of supertransferred hyperfine fields involving vacancies and in the case of cation-deficient Fe2TiO4 also diamagnetic Ti4+ neighbours of the Fe ions.  相似文献   

3.
The electron paramagnetic resonance (EPR) of Gd3+ in MgF2 reveals that Gd3+ has two different environments in the lattice. One of them has D 2h symmetry, the EPR spectrum is characterized by a large zero field splitting [B 2 0 = 968.10?4 cm?1; B 2 2 = 357.10?4 cm?1] and the fourth order term of the spin Hamiltonian is axial; it is assumed that one Gd3+ substitutes two Mg2+. The other Gd3+ center has only monoclinic symmetry. From the analysis of the fourth order term of the spin Hamiltonian of the corresponding spectrum it is seen that one Gd3+ substitutes one Mg2+ and that this substitution produces a large local distortion of the lattice.  相似文献   

4.
The transformation of vivianite and the direct synthesis starting from pure chemicals lead to the formation of lipscombite {Fe x 2+ Fe 3?x 3+ [(OH)3?x/(PO4)2]} with varying Fe2+/Fe3+ molar ratios. The influence of this ratio on the Mössbauer spectra, solubility, electrokinetic potential and infrared spectra has been studied. By means of Mössbauer spectroscopy, the distribution of the Fe2+ and Fe3+ ions between the octahedral sites I and II has been investigated. The unit cell dimensions have been determined from Guinier-Hägg X-ray diffraction patterns. The crystal system is tetragonal for synthetic lipscombite with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å. Lipscombite has been found to show a negative and time-dependent zeta-potential which, moreover, is influenced by the pH of the suspension and the Fe2+/Fe3+ molar ratio. An explanation of the time-dependence of the zeta-potential on variations of solubility is proposed. Infrared absorption spectrum only is characterized by two absorption bands: v OH(3,500 cm?1) and v P?O(1,100-960 cm?1). The density at 25° C is determined in toluene as 3.36±0.01 g·cm?3.  相似文献   

5.
Room temperature and low temperature Mössbauer and optical absorption spectroscopic data on six natural chloritoids characterized by means of electron microprobe and X-ray powder diffraction techniques are presented. Two narrow quadrupole doublets with widths of 0.25–0.29 mm/s assigned to Fe2+ in a relatively large octahedral site and Fe3+ in a smaller octahedral site, are observed in the Mössbauer spectra. Polarized optical absorption spectra reveal three main absorption bands. A broad absorption band at 16,300 cm?1, which is strongly polarized in EX and EY and shows a linear increase in integral absorption with increasing [Fe2+] [Fe3+] concentration product, is assigned to a Fe2++Fe3+→Fe3++Fe2+ charge transfer transition. This band displays also a temperature dependence different from that of single ion d?d transitions. Two absorption bands at 10,900 cm?1 and 8,000 cm?1 are, on the basis of compositional dependence and energy, assigned to Fe2+ in the large M(1B) octahedra of the brucite-type layer in chloritoid. Combined spectroscopic evidence and structural and chemical considerations support a distribution scheme for ferrous and ferric iron which orders the Fe2+ ions in the M(1B) octahedra and the Fe3+ ions in the small M(1A) octahedral sites. Both types of octahedra are found in the brucite type layer of chloritoid.  相似文献   

6.
Laihuite reported in the present paper is a new iron silicate mineral found in China with the following characteristics:
  1. This mineral occurs in a metamorphic iron deposit, associated with fayalite, hypersthene, quartz, magnetitc, etc.
  2. The mineral is opaque, black in colour, thickly tabular in shape with luster metallic to sub-metallic, two perfect cleavages and specific gravity of 3.92.
  3. Its main chemical components are Fe and Si with Fe3+>Fe2+. The analysis gave the formula of Fe Fe 1.00 3+ ·Fe 0.58 2+ ·Mg 0.03 2+ ·Si0.96O4.
  4. Its DTA curve shows an exothermic peak at 713°C.
  5. The mineral has its own infrared spectrum distinctive from that of other minerals.
  6. This mineral is of orthorhombic system; space group:C 2h /5 ?P21/c; unit cell:α=5.813ű0.005,b=4.812ű0.005,c=10.211ű0.005,β=90.87°.
  7. The Mössbauer spectrum of this mineral is given, too.
  相似文献   

7.
The mixed valence iron silicate ilvaite, CaFe 2 2+ Fe3+Si2O8(OH), displays electron delocalization associated with Fe2+→Fe3+ charge transfer as observed by Mössbauer spectroscopy. Previous studies report the observation of an ‘electron hopping phenomenon’ with resolution of discrete valence states below 320 K. Mössbauer spectra of a suite of naturally occurring ilvaites were recorded over a temperature range, 80 K to 575 K. Five quadrupole doublets were resolved by computer fitting and assigned to Fe2+(A), Fe2+(B), Fe3+(A), and Fe2+(A)→Fe3+(A)‖c and ⊥c. Contrary to prior work, doublets associated with electron delocalization are resolved at 80 K and preclude the use of a Verwey-type order-disorder model. We propose a thermal activation model and discuss its criteria from molecular orbital and mineralogical viewpoints.  相似文献   

8.
An analysis has been made of the strong yellow luminescence of S 2 ? in the silicate mineral scapolite. The emission spectrum is dependent upon excitation wavelength, indicating that S 2 ? occupies several different sites. The vibrational constants for the ground state average 609 cm?1 for ω″0, while ω″0χ″0=2.2cm?1. For the excited state ω′0=399cm?1 and ω′0χ′0=1.0cm?1. The intensities of the vibrational bands are described by a simple harmonic oscillator calculation.  相似文献   

9.
Room temperature X-irradiation of some natural beryls produced several new absorption lines in the electron paramagnetic resonance (EPR) spectrum, a known series of optical absorption lines in the 500–700 nm range, and a shift of the absorption edge to lower energies. Several of the new EPR lines and part of the irradiation-induced shift of the absorption edge disappeared after a few days at room temperature, and were not examined in detail. However, three of the paramagnetic centres responsible for the new EPR lines were stable at room temperature and two of these have previously been identified as atomic hydrogen and the methyl radical, CH3. These species were stable to ~150 and ~450°C respectively. The third stable species, hitherto unreported, showed a single-line EPR spectrum of axial symmetry, with g∥=2.0051 and g⊥=2.0152. This spectrum was found to be intensity-correlated with the series of optical bands in the 500–700 nm range, after thermal bleaching at 175°C. The EPR and optical spectra are therefore assigned to the same species. It is argued that this species is the CO 3 ? molecular ion, located in the widest part of the structural channel and aligned with the plane of the molecule perpendicular to the c axis. The EPR spectrum is consistent with a 2 A2 ground state of a CO 3 ? molecule with trigonal symmetry, and this requires that the optical transition has a 2 A22 E′ character. Most of the features in the optical spectrum can be assigned to coupling of a totally symmetric mode of frequency ~1020 cm?1 onto a zero-phonon line at 14,490 cm?1 and a second weaker line at 16,020 cm?1. However, both of these two fundamental lines are structured, and the two components show strong temperature-dependent derivative-shaped magnetic circular dichroism (MCD). Furthermore, the overall sign of the MCD for the line at 16,020 cm?1 is opposite to that at 14,490 cm?1. The separation (~120 cm?1) of the two components of the 14,490 cm?1 line is much larger than that expected from spin-orbit interaction, and the origin of this splitting is not yet understood.  相似文献   

10.
Manganoan lipscombite (Fe x /2+ , M y /2+ ) Fe 3?(x +y)/3+ [OH)3?(x+y)(PO4)2] was synthesized from pure chemicals. From the study of the Mn2+/Fe2+ atomic ratio by Mössbauer spectra, solubility, and electrokinetic properties, it was found that the crystal structure of lipscombite is not changed substantially by the manganese substitution. The unit cell parameters were determined from Guinier-Hägg X-ray diffraction patterns, which are identical for both synthetic ferrous-ferric and manganoan lipscombite. The two compounds crystallize in the tetragonal system with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å.  相似文献   

11.
Violet, non-pleochroic and greenish-blue, pleochroic chromium-substituted sapphirines were found in corundum-bearing spinel-websterite xenolites from the Yakutian kimberlite pipes Noyabrskaya (N) and Sludyanka (Sl), respectively. The crystallochemical formulae of sapphirine crystals from such xenolites were determined by EMP to be (Mg3.40Fe0.23Al3.25Cr0.16)[6] Al 1.00 [6] [O2/Al4.53Si1.47O18] (N) and (Mg2.53Fe0.55 Mn0.04Ti 0.03 4+ Al3.55Cr 0.08 3+ )[6]Al 1.00 [16] [O2/Al4.28Si1.73O18] (Sl). Single crystal spectra in the range 35000–6000 cm1- showed a slightly polarization dependent absorption edge near 3200 cm1- (N) or 30000 cm1- (Sl) and unpolarized bands at 25300 and 17300 cm1-, typical of spin-allowed transitions, derived from 4A2g4T1g and 4A2g4T2g, of Cr3+ in octahedral sites, with point symmetry C1, of the structure. Another weak band at 23000 cm?1 in the sapphirine-N spectra is attributed to low symmetry splitting of the excited 4T1 (F)-State of Cr3+. These assignments lead to crystal field parameters Dq=1730cm?1 and B= 685cm?1 of Cr3+ in sapphirine. Crystallochemical and spectroscopic arguments suggest that Cr3+ subsitutes for Al in the M(1) or M(8) sites of the sapphirine structure. In addition to Cr3+-transitions, spectra of Sl exhibit weak dd-bands of Fe2+ at 10000 and 7700 cm1-, which are unpolarized in consistency with the C1 site symmetry of the octahedra in the structure. Spectra of Sl show also prominent, broad bands (Δv1/2~-5000 cm1-) at 15000 and 11000 cm1-, which occur in E//Y(//b) and E//Z(//c=12°) only and exhibit an intensity ratio αY∶αz close to 1∶3. This result, the large half width, as well as band energy — MM distance considerations suggest that these bands originate from Fe2+[6]-Fe3+[6] charge-transfer transitions in wall octahedra M(1)M(2), M(6)M(7) etc., forming MM vectors of 30° with the c-axis. The lack of Fe2+-Fe3+ charge-transfer bands in sapphirine N might indicate a lower oxygen fugacity during the formation of the websterite from the Noyabrskaya pipe compared to that from the Sludyanka pipe.  相似文献   

12.
Electron paramagnetic resonance (EPR) of Fe3+ in SnO2 has been realized in a natural single crystal of cassiterite at 9.55 GHz (X-band) and at 34.40 GHz (Q-band). Spectra show the simultaneous presence of four groups of independent signals, each one typical of the immediate environment of a specific paramagnetic iron. Fe3+ always substitutes Sn4+ in an octahedral site. The four paramagnetic centers are due to four different charge compensation mechanisms. The spin Hamiltonian constant values for the SN center and I1 center confirm the former results of the authors about for these two centers. SN and I1 present a weak deviation from axial symmetry. The first preserves the crystallographic local symmetry of the tin site and the second shows a symmetry deviation of 0.6° probably due to the presence of an OH group in the coordination polyhedron. On the other hand, for the Sd1 center and mostly for the Sd2 center, never previously subjected to single crystal EPR measurements, the study of spectra symmetry and the determination of B 2 0 and B 2 2 constants produced new data. The Sd1 center could be due to a relaxation of the lattice together with a non local charge compensation mechanism. The Sd2 center presents a strong deviation from axial symmetry with mm local symmetry coordination due to coupling of Fe3+ and Nb5+. This coupling is proven by EPR studies of synthetic cassiterites doped with iron and niobium.  相似文献   

13.
The temperature dependence of the lattice parameters of pure anorthite with high Al/Si order reveals the predicted tricritical behaviour of the \(I\bar 1 \leftrightarrow P\bar 1\) phase transition at T c * =510 K. The spontaneous strain couples to the order parameter Q° as x iS xQ i 2 with S xQ 1 =4.166×10?3, S xQ 2 =0.771×10?3, S xQ 3 =?7.223×10?3 for the diagonal elements. The temperature dependence of Q° is $$Q^{\text{o}} = \left( {1 - \frac{T}{{510}}} \right)^\beta ,{\text{ }}\beta = \tfrac{{\text{1}}}{{\text{4}}}$$ A strong dependence of T c * , S xQ i and β is predicted for Al/Si disordered anorthite.  相似文献   

14.
The polarized (Ea′, Eb and Ec) electronic absorption spectra of five natural chromium-containing clinopyroxenes with compositions close to chromdiopside, omphacite, ureyite-jadeite (12.8% Cr2O3), jadeite, and spodumene (hiddenite) were studied. The polarization dependence of the intensities of the Cr3+ bands in the clinopyroxene spectra cannot be explained by the selection rules for the point groups C 2 or C 2v but can be accounted for satisfactorily with the help of the higher order pseudosymmetry model, i.e. with selection rules for the point symmetry group C 3v. The trigonal axis of the pseudosymmetry crystal field forms an angle of 20.5° with the crystallographic direction c in the (010) plane. D q increases from diopside (1542 cm?1) through omphacite (1552 cm?1), jadeite (1574 cm?1) to spodumene (1592 cm?1). The parameter B which is a measure of covalency for Cr3+-O bonds at M1 sites in clinopyroxene depends on the Cr3+ concentration and the cations at M2 sites.  相似文献   

15.
Electron paramagnetic resonance (EPR) measurements of natural anhydrite CaSO4, celestite SrSO4 and barite BaSO4 have revealed the presence of PO 3 2? and SO 3 ? radicals. Hyperfine structure from33S has been detected and measured for the first time. Low-symmetry effects, which are manifested in noncoincidence of g and hyperfine axes, were observed for SO 3 ? . The dynamics of one of the two SO 3 ? types in anhydrite has been investigated. Variations of spin Hamiltonian parameters with temperature have been attributed to thermally induced jumps between the two magnetically inequivalent sites of this center.  相似文献   

16.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

17.
Hydrogeochemical studies have been carried out in a coastal region, using multivariate statistical model, for better understanding the controlling processes that influence the aquifer chemistry. Two principal components (PC1 and PC2) are extracted from the data set of chemical variables (pH, TDS, Ca2+, Mg2+, Na+, K+, HCO 3 ? , Cl?, SO 4 2? , NO 3 ? and F?), which account for 79% of the total variation in the quality of groundwater. The PC1 (salinity controlled process) includes the concentrations of TDS, Mg2+, Na+, K+, Cl?, SO 4 2? and NO 3 ? , while the PC2 (alkalinity controlled process) comprises the concentrations of pH, HCO 3 ? and F?. The spatial distribution of PC scores identifies the locations of high salinity and alkalinity processes. The first process corresponds to the influences of geogenic, anthropogenic and marine sources, and the second one to the influence of water-soil-rock interaction. Thus, the present study shows the usefulness of multivariate statistical model as an effective means of interpretation of spatial controlling processes of groundwater chemistry.  相似文献   

18.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

19.
Fluids at crustal pressures and temperatures   总被引:1,自引:0,他引:1  
  相似文献   

20.
Electric dipole polarizabilities have been calculated from first principles of quantum mechanics for the BO 3 3? , CO 3 2? , NO 3 ? series and for NO 2 ? and LiNO3(g). Calculated trends in average polarizability and polarizability anisotropy in the BO 3 3? -NO 3 ? series are in agreement with experiment and can be qualitatively interpreted in terms of the varying energies of the a1′, a2″ and e′ symmetry unoccupied MO's of the oxyanions. Embedding a CO 3 2? ion in a D3h symmetry array of divalent cations reduces both the average polarizability and its anisotropy, particularly when diffuse s and p functions are included in the calculation. Calculations on the gas phase LiNO3 molecule and on the free NO 3 ? ion in the distorted geometry found in LiNO3(g) allow us to separate polarizability contributions internal to the NO 3 ? and Li+ ions from those which arise from the Li+-NO 3 ? interaction. The Li+-NO 3 ? interaction term so obtained is much smaller than the NO 3 ? contribution but is in turn larger than the Li+ contribution, suggesting that the inclusion of this interaction term is essential for obtaining accurate results for ion pairs. Although static polarizabilities are in reasonable agreement with experiment for NO 3 ? the wavelength dispersion of the polarizability is underestimated by about a factor of two, apparently as a result of inadequacies in the quantum mechanical method. Calculated values are also presented for 14N NMR shieldings in the nitrogen oxyanions but these are in only qualitative agreement with the experimental values. Similarly, calculated values of magnetic susceptibility are in only qualitative agreement with experiment although trends along the BO 3 3? -NO 3 ? series are properly reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号