首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
新型Landsat8卫星影像的反射率和地表温度反演   总被引:20,自引:0,他引:20       下载免费PDF全文
Landsat 8卫星自2013年2月发射以来,其影像的定标参数经过了不断调整和完善,针对Landsat 8开发的各种算法也相继问世.本文采用最新的参数、算法和引入COST算法建立的大气校正模型,对Landsat 8多光谱和热红外波段进行了处理,反演出它们的反射率和地表温度,并与同日的Landsat 7数据和实测地表温度数据进行了对比.结果表明,现有Landsat 8多光谱数据的定标参数和大气顶部反射率反演算法已有很高的精度,本文引入COST算法建立的Landsat 8大气校正模型也与Landsat 7的COST模型所获得的结果几乎相同,相关系数可高达0.99.但是现有针对Landsat 8提出的地表温度反演算法仍不理想,已提出的劈窗算法误差都较大.鉴于TIRS 11热红外波段的定标参数仍不理想,因此在现阶段建议采用单通道算法单独反演TIRS 10波段来求算地表温度,但要注意根据大气水汽含量的情况选用正确的大气参数计算公式.  相似文献   

2.

Satellite images are used extensively in studying the urban heat island (UHI) phenomenon. We evaluated the suitability of thermal infrared (TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing. Two modified algorithms for retrieving the land surface temperature (LST) from HJ-1B data were tested. The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output. The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data. Of the two algorithms, the mono-window algorithm performed better but further tests are necessary. With more frequent coverage than TM and higher spatial resolution than MODIS, the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.

  相似文献   

3.
Satellite images are used extensively in studying the urban heat island (UHI) phenomenon. We evaluated the suitability of thermal infrared (TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing. Two modified algorithms for retrieving the land surface temperature (LST) from HJ-1B data were tested. The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output. The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data. Of the two algorithms, the mono-window algorithm performed better but further tests are necessary. With more frequent coverage than TM and higher spatial resolution than MODIS, the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.  相似文献   

4.
Antarctica plays a key role in global energy balance and sea level change. It has been conventionally viewed as a whole ice body with high albedo in General Circulation Models or Regional Climate Models and the differences of land cover has usually been overlooked. Land cover in Antarctica is one of the most important drivers of changes in the Earth system. Detailed land cover information over the Antarctic region is necessary as spatial resolution improves in land process models. However, there is a lack of complete Antarctic land cover dataset derived from a consistent data source. To fill this data gap, we have produced a database named Antarctic Land Cover Database for the Year 2000 (AntarcticaLC2000) using Landsat Enhanced Thematic Mapper Plus (ETM+) data acquired around 2000 and Moderate Resolution Imaging Spectrometer (MODIS) images acquired in the austral summer of 2003/2004 according to the criteria for the 1:100000-scale. Three land cover types were included in this map, separately, ice-free rocks, blue ice, and snow/firn. This classification legend was determined based on a review of the land cover systems in Antarctica (LCCSA) and an analysis of different land surface types and the potential of satellite data. Image classification was conducted through a combined usage of computer-aided and manual interpretation methods. A total of 4067 validation sample units were collected through visual interpretation in a stratified random sampling manner. An overall accuracy of 92.3% and the Kappa coefficient of 0.836 were achieved. Results show that the areas and percentages of ice-free rocks, blue ice, and snow/firn are 73268.81 km2 (0.537%), 225937.26 km2 (1.656%), and 13345460.41 km2 (97.807%), respectively. The comparisons with other different data proved a higher accuracy of our product and a more advantageous data quality. These indicate that AntarcticaLC2000, the new land cover dataset for Antarctica entirely derived from satellite data, is a reliable product for a broad spectrum of applications.  相似文献   

5.
Suspended sediment concentration (SS) is an important indicator of marine environmental changes due to natural causes such as tides, tidal currents, and river discharges, as well as human activities such as construction in coastal regions. In the Saemangeum area on the west coast of Korea, construction of a huge tidal dyke for land reclamation has strongly influenced the coastal environment. This study used remotely sensed data to analyze the SS changes in coastal waters caused by the dyke construction. Landsat and MODIS satellite images were used for the spatial analysis of finer patterns and for the detailed temporal analysis, respectively. Forty Landsat scenes and 105 monthly composite MODIS images observed during 1985-2010 were employed, and four field campaigns (from 2005 to 2006) were performed to verify the image-derived SS. The results of the satellite data analyses showed that the seawater was clear before the dyke construction, with SS values lower than 20 g/m(3). These values increased continuously as the dyke construction progressed. The maximum SS values appeared just before completion of the fourth dyke. Values decreased to below 5 g/m(3) after dyke construction. These changes indicated tidal current modification. Some eddies and plumes were observed in the images generated from Landsat data. Landsat and MODIS can reveal that coastal water turbidity was greatly reduced after completion of the construction.  相似文献   

6.
This research integrated selected land degradation indicators (vegetation cover, proportion of drifting sand area, desertification rate, and population pressure) with geo‐information techniques (remote sensing, geographic information system and global positioning system) to assess the severity of land degradation risk. The northern part of Shaanxi province in China was taken as a case study. A computerized land degradation severity assessment was implemented, and ERmapper ver.6.2 and ARC/INFO GIS ver.8.3 environments were used to manage and manipulate thematic data, and to process satellite images and tabular data. Two Landsat TM images in October 1987 and October 1999 were used to produce land use/cover maps of the study area based on the maximum likelihood classification method. These maps were then used to generate land use, land cover change, vegetation degradation and land degradation maps for the study area during the study period, and their corresponding data were integrated into a systematic analysis. Results showed that the overall severity of land degradation in the study area worsened during the study period from 1987 to 1999 with severely, highly and moderately degraded land accounting for 73·8 per cent of the total area. While the area affected by desertification has increased, the rate of desertification has also accelerated to reach 41·5 km2 a?1. Risk of land degradation in the study area has increased, on average, by 39·4 per cent since 1987. Incorporation of both natural and anthropogenic factors in the analysis provided realistic assessment of the risk of desertification. The study area, in general, is exposed to a high risk of land degradation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrological modelling of mesoscale catchments is often adversely affected by a lack of adequate information about specific site conditions. In particular, digital land cover data are available from data sets which were acquired on a European or a national scale. These data sets do not only exhibit a restricted spatial resolution but also a differentiation of crops and impervious areas which is not appropriate to the needs of mesoscale hydrological models. In this paper, the impact of remote sensing data on the reliability of a water balance model is investigated and compared to model results determined on the basis of CORINE (Coordination of Information on the Environment) Land Cover as a reference. The aim is to quantify the improved model performance achieved by an enhanced land cover representation and corresponding model modifications. Making use of medium resolution satellite imagery from SPOT, LANDSAT ETM+ and ASTER, detailed information on land cover, especially agricultural crops and impervious surfaces, was extracted over a 5-year period (2000–2004). Crop-specific evapotranspiration coefficients were derived by using remote sensing data to replace grass reference evapotranspiration necessitated by the use of CORINE land cover for rural areas. For regions classified as settlement or industrial areas, degrees of imperviousness were derived. The data were incorporated into the hydrological model GROWA (large-scale water balance model), which uses an empirical approach combining distributed meteorological data with distributed site parameters to calculate the annual runoff components. Using satellite imagery in combination with runoff data from gauging stations for the years 2000–2004, the actual evapotranspiration calculation in GROWA was methodologically extended by including empirical crop coefficients for actual evapotranspiration calculations. While GROWA originally treated agricultural areas as homogeneous, now a consideration and differentiation of the main crops is possible. The accuracy was determined by runoff measurements from gauging stations. Differences in water balances resulting from the use of remote sensing data as opposed to CORINE were analysed in this study using a representative subcatchment. Resulting Nash–Sutcliff model efficiencies improved from 0.372 to 0.775 and indicate that the enhanced model can produce thematically more accurate and spatially more detailed local water balances. However, the proposed model enhancements by satellite imagery have not exhausted the full potential of water balance modelling, for which a higher temporal resolution is required.  相似文献   

8.
The integrated application of remote sensing, geographic information system and quantitative analytical modeling can provide scientific and effective methods for monitoring and studying urban heat island, based on land surface temperature (LST) retrieved from thermal infrared channel data of sensors. In this paper, LST is retrieved from Landsat TM6 and ETM + 6 data of Shanghai central city in 1989, 1997, 2000 and 2002, by using the mono-window algorithm. Based on the data, global and local spatial autocorrelation analysis, and geostatistical methods are adopted to quantitatively describe the characteristics of spatial heterogeneity and temporal evolution of land surface thermal landscape at different scales and periods in Shanghai central city, by utilizing exploratory spatial data analysis. Results show that LST field in Shanghai central city tends to fragmentize and complicate with the development of Shanghai, and its global spatial difference becomes greater gradually. The spatial variance pattern of the change of LST field from 1997 to 2002 indicates that the dynamic change of LST presents a tendency of increase in circularity. LST declines distinctly in the districts of Puxi and Pudong near and inside the inner ring road, while it rises obviously outside the central city and near the out ring road. The extrema of temporal change in LST field have a characteristic of spatial clustering. Besides, as the city of Shanghai expands in a circular pattern as a whole, the directional difference of dynamic change of urban surface thermal landscape exists but is not very obvious.  相似文献   

9.
Remote sensing based land cover mapping at large scale is time consuming when using either supervised or unsupervised classification approaches. This article used a fast clustering method—Clustering by Eigen Space Transformation(CBEST) to produce a land cover map for China. Firstly, 508 Landsat TM scenes were collected and processed. Then, TM images were clustered by combining CBEST and K-means in each pre-defined ecological zone(50 in total for China). Finally, the obtained clusters were visually interpreted as land cover types to complete a land cover map. Accuracy evaluation using 2159 test samples indicates an overall accuracy of 71.7% and a Kappa coefficient of 0.64. Comparisons with two global land cover products(i.e., Finer Resolution Observation and Monitoring of Global Land Cover(FROM-GLC) and GlobCover 2009) also indicate that our land cover result using CBEST is superior in both land cover area estimation and visual effect for different land cover types.  相似文献   

10.
在集水区尺度利用景观生态学的原理进行分析和管理是现代生态学与地理科学的一个重要课题.在人口增长和经济发展的压力下,集水区的格局和过程己受到人类活动越来越强烈地干扰.赛勒支盆地是一个典型的美国太平洋西北部沿海地区的集水区,本文以此为例,研宄了美国俄勒冈州中部集水区尺度的景观格局和过程在人类活动干扰下的时空动态.通过卫星遥感影像的应用,我们对1977年到2000年间赛勒支盆地土地覆盖的变化进行了检测.我们用陆地资源卫星1977年的多光谱影像(MSS), 1988年的专题影像(TM)' 2000年的增强专题影像(ETM+)高精度地定量分析了森林演替系列(如,演替后期的老针叶林和成熟针叶林,演替前期的年轻针叶林,以及更新的幼林)和其它土地覆盖类型的变化.景观的空间格局通过多种格局指数,例如,缀块指数、缀块形状复杂性指数、以及连接指数等进行了分析.同时,基于美国太平洋西北部主要森林类型和其它土地覆盖类型碳通量和碳贮量的空间数据库和文献资料,我们对 1977-2000年赛勒支盆地中的碳库及其在人类活动干扰下的变化作了测定.研宄结果揭示出,因为森林皆伐,老针叶林和成熟针叶林在1977-2000年间显著地减少,分别由占整个盆地土地覆盖面积的23%和12%, 减少为12%和7%;与此相反,年轻针叶林和无林地则分别从24%和5%增加为43%和14%.同时,因为采伐等干扰,留存的老针叶林和成熟针叶林空间分布格局的破碎度也迅速增加.集水区的碳收支在 1977-2000期间发生了巨大的变化.在收获干扰的压力下,在1977-2000年间,整个集水区的生态系统碳贮量从 17640797t 减少到 13405720t;净生态系统生产力(Net Ecosystem Production, NEP)由每年 100462tC 减少为每年76800tC.  相似文献   

11.
介绍了卫星热红外遥感技术用于火山监测的国内外研究现状,阐述了热红外遥感技术的原理,分析了卫星热红外遥感技术用于火山活动性监测的可行性。以长白山天池火山为例,基于Landsat TM/ETM影像和ASTER影像反演获得了1999—2008年的温度场,并选取了其中的3种地面覆盖类型(森林植被、土壤和植被(矮草)以及裸露岩石),从而去除了地表环境因素的影响;从每种地面覆盖类型中扣除了当日天池气象站的平均气温,去除了气象因素的影响,得到了由火山热活动可能导致的温度热异常。结果显示,从1999—2005年,由火山活动导致的温度热异常伴随着扰动发生了明显的上升,自2005年以后逐渐下降,2006—2008年趋于稳定。这些结果与测震、GPS形变以及He同位素比值变化趋势保持了较好的一致性,表明卫星热红外遥感技术用于火山活动性监测的巨大潜力和优势,可以作为一种常规的监测手段尝试性地纳入日常的火山监测工作中  相似文献   

12.
Improvement of snow depth retrieval for FY3B-MWRI in China   总被引:3,自引:0,他引:3  
The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave Radiation Imager(FY3B-MWRI)in China.Based on 7-year(2002–2009)observations of brightness temperature by the Advanced Microwave Scanning Radiometer-EOS(AMSR-E)and snow depth from Chinese meteorological stations,we develop a semi-empirical snow depth retrieval algorithm.When its land cover fraction is larger than 85%,we regard a pixel as pure at the satellite passive microwave remote-sensing scale.A 1-km resolution land use/land cover(LULC)map from the Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences,is used to determine fractions of four main land cover types(grass,farmland,bare soil,and forest).Land cover sensitivity snow depth retrieval algorithms are initially developed using AMSR-E brightness temperature data.Each grid-cell snow depth was estimated as the sum of snow depths from each land cover algorithm weighted by percentages of land cover types within each grid cell.Through evaluation of this algorithm using station measurements from 2006,the root mean square error(RMSE)of snow depth retrieval is about 5.6 cm.In forest regions,snow depth is underestimated relative to ground observation,because stem volume and canopy closure are ignored in current algorithms.In addition,comparison between snow cover derived from AMSR-E and FY3B-MWRI with Moderate-resolution Imaging Spectroradiometer(MODIS)snow cover products(MYD10C1)in January 2010 showed that algorithm accuracy in snow cover monitoring can reach 84%.Finally,we compared snow water equivalence(SWE)derived using FY3B-MWRI with AMSR-E SWE products in the Northern Hemisphere.The results show that AMSR-E overestimated SWE in China,which agrees with other validations.  相似文献   

13.
Abstract

Quantifying the reliability of distributed hydrological models is an important task in hydrology to understand their ability to estimate energy and water fluxes at the agricultural district scale as well the basin scale for water resources management in drought monitoring and flood forecasting. In this context, the paper presents an intercomparison of simulated representative equilibrium temperature (RET) derived from a distributed energy water balance model and remotely-sensed land surface temperature (LST) at spatial scales from the agricultural field to the river basin. The main objective of the study is to evaluate the use of LST retrieved from operational remote sensing data at different spatial and temporal resolutions for the internal validation of a distributed hydrological model to control its mass balance accuracy as a complementary method to traditional calibration with discharge measurements at control river cross-sections. Modelled and observed LST from different radiometric sensors located on the ground surface, on an aeroplane and a satellite are compared for a maize field in Landriano (Italy), the agricultural district of Barrax (Spain) and the Upper Po River basin (Italy). A good ability of the model in reproducing the observed LST values in terms of mean bias error, root mean square error, relative error and Nash-Sutcliffe index is shown.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

14.
Ecological geographic regions, also called eco-regions, can be used to divide a remotely sensed image, which is helpful for reducing the complexity of land cover types within eco-regions and for improving the classification accuracy of land cover. In this case study in China, we improved a method of ecological geographic regionalization that is more suitable for remote sensing mapping of regional land cover, and we obtained new eco-regions. The canonical correspondence analysis (CCA) and k-means clustering were adopted in the ecological geographic regionalization using both seasonal remotely-sensed vegetation information and environmental data including climate, elevation and soil features. Our results show that the combination of seasonal vegetation information and the CCA performed well in the selection of the dominant environmental factor of the biogeographic pattern, and it can be used as regionalization indicators of eco-regions. We found that thermal factors are the most important driving forces of the biogeographic pattern in China, which followed by moisture factors. Two global land cover products (MODIS MCD12C1 and GlobCover) were used to assess our eco-regions. The results show that our eco-regions performed better than that of a previous study regarding the complexity of land cover types, such as in the number of types and the proportional area of the major/secondary type. These results indicate that the method of ecological geographic regionalization, which is based on environmental factors associated with seasonal vegetation features, is effective for reducing the regional complexity of land cover.  相似文献   

15.
Based on the land surface temperature (LST), the land cover classification map,vegetation coverage, and surface evapotranspiration derived from EOS-MODIS satellite data, and by the use of GIS spatial analytic technique and multivariate statistical analysis method, the urban heat island (UHI) spatial distribution of the diurnal and seasonal variabilities and its driving forces are studied in Beijing city and surrounding areas in 2001. The relationships among UHI distribution and landcover categories, topographic factor, vegetation greenness, and surface evapotranspiration are analyzed. The results indicate that: (i) The significant UHI occur in Beijing city areas in the four seasons due to high heat capacity and multi-reflection of compression building, as well as with special topographic features of its three sides surrounded by mountains,especially in the summer. The UHI spatial distribution is corresponding with the urban geometry structure profile. The LST difference is approximately 4-6℃ between Beijing city and suburb areas, comparatively is 8- 10℃ between Beijing city area and outer suburb area in northwestern regions. (ii) The UHI distribution and intensity in daytime are different from nighttime in Beijing city area, the nighttime UHI is obvious. However, in the daytime, the significant UHI mainly appears in the summer, the autumn takes second place, and the UHI in the winter and the spring seem not obvious. The surface evapotranspiration in suburb areas is larger than that in urban areas in the summer, and high latent heat exchange is evident, which leads to LST difference between city area and suburb area. (iii) The reflection of surface landcover categories is sensitive to the UHI, the correlation between vegetation greenness and UHI shows obviously negative.The scatterplot shows that there is the negative correlation between NDVI and LST (R2 = 0.6481).The results demonstrate that the vegetation greenness is an important factor for reducing the UHI,and large-scale construction of greenbelts can considerably reduce the UHI effect.  相似文献   

16.
The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi‐scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust‐producing sources. The representation of intra‐annual and inter‐annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter‐annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
中国大陆地表温度年变基准场研究   总被引:10,自引:4,他引:6       下载免费PDF全文
非构造活动或非地震因素对地表热辐射场(地表温度)的影响,对于利用卫星热红外遥感探索地震前兆抑或断层活动有着重要的现实意义.地表温度中,典型非构造活动或非地震因素成份有:由太阳辐射引起的稳定年周期成份和与地形、纬度及能量平衡等因素有关的长期稳定成份,合称年变基准场.本文根据2000~2008年的MODIS/Terra地表温度产品,利用小波分析提取了中国大陆地表温度的年变基准场.在此基础上,结合热传导方程和数学物理方法,获得了年变基准场的(半)定量化表达式.进一步, 利用地表温度的长期稳定成份,获得了温度与海拔、纬度变化之间的定量关系:海拔每增加100 m,温度降低0.51±0.01 K; 纬度每增加1°,温度降低0.77±0.08 K.总之,年变基准场可为利用热红外辐射提取地壳活动信息提供一种参考背景, 温度与海拔、纬度变化之间的定量关系则可用来校正地形起伏和纬度变化对地表温度的影响.  相似文献   

18.
Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution (30 m) global land cover dataset (GlobeLand30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model (BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the GlobeLand30 data in the model. First, the GlobeLand30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type (PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution GlobeLand30 land cover type and area percentage with the coarser model grid resolutions globally. The GlobeLand30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies (lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the GlobeLand30-based data were used in the BCC_CSM atmosphere model. The results suggest that the GlobeLand30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.  相似文献   

19.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Four satellite‐based snow products are evaluated over the Tibetan Plateau for the 2007–2010 snow seasons. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow cover daily L3 Global 500‐m grid products (MOD10A1 and MYD10A1), the National Oceanic and Atmospheric Administration Interactive Multisensor Snow and Ice Mapping System (IMS) daily Northern Hemisphere snow cover product and the Advanced Microwave Scanning Radiometer – Earth Observing System Daily Snow Water Equivalent were validated against Thematic Mapper (TM) snow cover maps of Landsat‐5 and meteorological station snow depth observations. The overall accuracy of MOD10A1, MYD10A1 and IMS is higher than 91% against stations observations and than 79% against Landsat TM images. In general, the daily MODIS snow cover products show better performance than the multisensor IMS product. However, the IMS snow cover product is suitable for larger scale (~4km) analysis and applications, with the advantage over MODIS to allow for mitigation for cloud cover. The accuracy of the three products decreases with decreasing snow depth. Overestimation errors are most common over forested regions; the IMS and Advanced Microwave Scanning Radiometer – Earth Observing System Snow Water Equivalent products also show poorer performance that the MODIS products over grassland. By identifying weaknesses in the satellite products, this study provides a focus for the improvement of snow products over the Tibetan plateau. The quantitative evaluation of the products proposed here can also be used to assess their relative weight in data assimilation, against other data sources, such as modelling and in situ measurement networks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号