首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optimization of the bathymetric resurvey policy of the Netherlands Hydrographic Service requires insight into sea floor dynamics in the Southern North Sea. To study the spatial variations in sea floor dynamics, the bathymetric archives of the Netherlands Hydrographic Service are analyzed using deformation analysis, a statistical and innovative approach for bathymetric data. Based on the uncertainty of the data, our implementation of deformation analysis selects the significant spatial and temporal parameters, and provides estimates and their uncertainties for those parameters. We focus on sand wave areas in the regions of Rotterdam and of Amsterdam. In those areas, dredging takes place to guarantee a minimum depth. The results reveal a difference in sand wave migration between the two regions, over the past two decades. The dominant wavelengths of the sand waves vary within the regions, but we find a similar wavelength distribution for the two regions. We compare our results to earlier studies of the same sand wave areas in the Rotterdam region, showing similar migration rates, but different wavelengths. It is concluded, based on sand wave dynamics alone, that the Amsterdam region should be assigned a higher resurvey frequency than the Rotterdam region.  相似文献   

2.
动校正是地震资料处理的关键内容之一,直接关系到地震资料处理结果的精度.在浅层和大偏移距情况下,常规动校正使波形发生拉伸畸变,波形拉长、频带向低频方向移动,进而影响叠加效果.通常地震资料处理中大都采用切除的方法克服动校正拉伸畸变的影响,这对目的层较深时是可取的.以工程地质调查为目的的海洋地震勘探旨在了解海底之下较浅地层深度范围内的地质信息,一般勘探区水深较浅,数据叠加道数较少,如果仍然采取切除处理,势必严重影响资料的分辨率和准确度.本文阐述了一种无拉伸动校正方法,能较好地解决动校正后的波形畸变问题,理论模型和实际资料的处理结果表明该方法在近海浅层工程地震勘探中是行之有效的,有助于提高速度分析的精度和地震资料的分辨率.  相似文献   

3.
Within the Australian-Antarctic discordant zone, residual depth anomalies approach 1000 m. In sea floor younger than 10 Ma that is more than 500 m deeper than expected, Rayleigh wave phase velocities are significantly faster than in sea floor of comparable age in the Pacific. In this area, the shear wave velocity in the 20–40 km depth range is unusually fast, indicating that the lithosphere develops more rapidly than usual from an asthenosphere that is perhaps cooler than average. In sea floor that is older than 10 Ma, phase velocities are anomalously fast and independent of the residual depth. Beneath this older sea floor, the low-velocity zone in the oceanic mantle is much less pronounced than beneath sea floor of comparable age in the Pacific.  相似文献   

4.
We formulate an error propagation model based on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy. The system of observation equations in the VMM model defines the relation between the isostatic gravity data and the Moho depth by means of a second-order Fredholm integral equation of the first kind. The corresponding error model (derived in a spectral domain) functionally relates the Moho depth errors with the commission errors of used gravity and topographic/bathymetric models. The error model also incorporates the non-isostatic bias which describes the disagreement, mainly of systematic nature, between the isostatic and seismic models. The error analysis is conducted at the study area of the Tibetan Plateau and Himalayas with the world largest crustal thickness. The Moho depth uncertainties due to errors of the currently available global gravity and topographic models are estimated to be typically up to 1–2 km, provided that the GOCE gravity gradient observables improved the medium-wavelength gravity spectra. The errors due to disregarding sedimentary basins can locally exceed ~2 km. The largest errors (which cause a systematic bias between isostatic and seismic models) are attributed to unmodeled mantle heterogeneities (including the core-mantle boundary) and other geophysical processes. These errors are mostly less than 2 km under significant orogens (Himalayas, Ural), but can reach up to ~10 km under the oceanic crust.  相似文献   

5.
This work intends to determine if low-cost surveying techniques based on recreational echosounders can be used to perform nearshore bathymetry for analysing evolution of coastal sectors. For that purpose, two hydrographic surveying techniques were compared, i.e. (1) a real-time kinematic differential global positioning system (RTK-DGPS) synchronised with a single beam echosounder with real-time tidal elevation correction and (2) a low-cost recreational echosounder-chartplotter system using Global Navigation Satellite Systems (GNSS) with real-time European Geostationary Navigation Overlay Service (EGNOS) augmentation services and depth values post-processed using measured sea level. Two bathymetric data sets were obtained, one by each method, for the same area and survey lines at an ebb tidal delta (Tavira Inlet, Ria Formosa Portugal). Vertical differences were determined assuming no morphological variations between surveys. Results showed that depth elevation differences between bathymetric surfaces were of 0.10?±?0.16 m, slightly higher but within the same order of the error attributable to the used interpolator (0.00?±?0.11 m, triangular surface fitting). The differences between surveys performed with two different equipment sets and using different methodologies for correcting water elevations are very small both quantitative and qualitatively. Those differences can be diminished by improving the tidal level correction and uncertainties associated to different tidal slopes throughout the survey area. Pitch/roll corrections performed with low-cost GPS receivers would be also a valuable addition to the accuracy and precision of the method. It is then concluded that navigation with EGNOS augmentation services and sounding devices ten times cheaper than combined RTK-DGPS with single beam echosounders allow to measure and monitor accurately the nearshore bathymetry.  相似文献   

6.
Previous studies using commercial airborne electromagnetic equipment that is not optimized for marine surveying have demonstrated the use of airborne electromagnetic methods for measuring water depth and estimating sediment thickness. A new prototype helicopter time-domain airborne electromagnetic system, SeaTEM(0), is now under development for bathymetric surveying. The first sea trial of the SeaTEM(0) system took place over Broken Bay, New South Wales, Australia, in shallow water up to ∼30 m in depth. Broken Bay was chosen because the separate paleodrainage systems for the Hawkesbury River, Brisbane Water and Pittwater, which join in Broken Bay give rise to paleovalleys infilled with unconsolidated sediments, ranging in thickness between 0 m (bedrock outcrop) and ∼200 m. The survey area also included a tombolo with a beach either side, which provided the opportunity to measure water depth through a surf zone. Sediment thickness and water depth is predicted from stitched layered-earth inversion of data based on a simplified two-layer model that represents seawater and sediment overlying a resistive half-space basement (bedrock). The resulting bathymetric profiles show agreement typically to within ∼±1 m and ∼±0.5 m with known water depths in areas less than 20 and 6 m deep respectively. The inverted depth profile of the second (sediment) layer is noisy; however, the profiles reveal coarse topographic features of paleovalleys to depth limits of ∼60 to 80 m below sea level in 20 to 30 m water depth, as well as resolving bedrock ridges and exposed reefs in shallow waters.  相似文献   

7.

The ecosystem in northeastern China and the Russian Far East is a hotspot of scientific research into the global carbon balance. Forest aboveground biomass (AGB) is an important component in the land surface carbon cycle. In this study, using forest inventory data and forest distribution data, the AGB was estimated for forest in Daxinganlin in northeastern China by combining charge-coupled device (CCD) data from the Small Satellite for Disaster and Environment Monitoring and Forecast (HJ-1) and Geoscience Laser Altimeter System (GLAS) waveform data from the Ice, Cloud and land Elevation Satellite (ICESat). The forest AGB prediction models were separately developed for different forest types in the research area at GLAS footprint level from GLAS waveform parameters and field survey plot biomass in the Changqing (CQ) Forest Center, which was calculated from forest inventory data. The resulted statistical regression models have a R 2=0.68 for conifer and R 2=0.71 for broadleaf forests. These models were used to estimate biomass for all GLAS footprints of forest located in the study area. All GLAS footprint biomass coupled with various spectral reflectivity parameters and vegetation indices derived from HJ-1 satellite CCD data were used in multiple regression analyses to establish biomass prediction models (R 2=0.55 and R 2=0.52 for needle and broadleaf respectively). Then the models were used to produce a forest AGB map for the whole study area using the HJ-1 data. Biomass data obtained from forest inventory data of the Zhuanglin (ZL) Forest Center were used as independent field measurements to validate the AGB estimated from HJ-1 CCD data (R 2=0.71). About 80% of biomass samples had an error less than 20 t ha−1, and the mean error of all validation samples is 5.74 t ha−1. The pixel-level biomass map was then stratified into different biomass levels to illustrate the AGB spatial distribution pattern in this area. It was found that HJ-1 wide-swath data and GLAS waveform data can be combined to estimate forest biomass with good precision, and the biomass data can be used as input data for future carbon budget analysis.

  相似文献   

8.
—Semi-regional Ocean Bottom Seismograph (OBS) data acquired in the central and northern part of the Vøring Basin, mid-Norway margin, have been modeled by use of 2-D ray-tracing. The semi-regional model, derived from the study of twenty-five OBSs deployed along a 120-km long profile, is compared with a regional model consisting of five OBSs from the same profile. The semi-regional model is somewhat more detailed than the regional model, due to the considerably closer receiver spacing. The overall geometry and velocity distribution of the two models are remarkably similar, however, proving that the regional procedure with large OBS spacing provides a reliable regional model.¶Intrusions of sills, related to early Tertiary continental rifting and break up, are important at intermediate and deep sedimentary levels (2–10 km below sea floor) in most parts of the area. The semi-regional modeling suggests that one of the deepest sills extends much further east and is substantially thicker (locally more than 500 m) than indicated in the regional model. Another important difference is a high-velocity body within the upper crystalline crust at 11–12 km depth in the NW part of the area, indicating that the closer OBS spacing in the semi-regional modeling allows detection of local intra-crustal intrusions. Local differences are also inferred in the lower crust; at about 20 km depth a structure is inferred within the lower crust from wide-angle reflections. This might suggest that the high-velocity lower crustal layer, interpreted as magmatic underplating, consists of a mixture of underplated/intruded magmatic material and blocks of continental lower crust.  相似文献   

9.
渤海海域地震震源深度的分布特征   总被引:3,自引:1,他引:2  
震源深度的研究对于探索地震孕育和发生的深部环境,地震能量集结、释放的活动构造背景,以及地壳内部构造变形及其力学属性等都有非常重要的意义。本文选择渤海海域内观测精度相对较高的地震资料作为样本,统计分析了不同震级档、不同空间范围的震源深度分布特征,并初步探讨了震源深度与地震构造、地壳结构的关系。结果表明,渤海海域内中小震的震源深度在空间上的分布是不均匀的,发生在渤中断陷内的地震,其震源深度一般较深;而发生在山东半岛北部沿海与辽东半岛沿海的地震,其震级较低且震源一般较浅。但总体上,渤海海域内的地震多发生在10-20km的地壳中、上部,属浅源地震。  相似文献   

10.
南海北部东沙海域天然气水合物的初步研究   总被引:50,自引:15,他引:50       下载免费PDF全文
利用地震、测井与地温资料综合分析了南海北部东沙海域可能存在的天然气水合物的分布特征.研究表明,在东沙海域地震剖面上出现似海底反射层、弱振幅带等天然气水合物分布标志,在声波测井曲线上呈现高速、速度倒转等天然气水合物存在特征.似海底反射层的深度与1144站位,及平均地温梯度资料得出的稳定带厚度较吻合.1144站位与1148站位似海底反射层距海底较深,分别为654m与475m.在1144站位附近,弱振幅带的顶界可能代表含天然气水合物沉积层的顶界,约在450m左右.  相似文献   

11.
We obtain the wave velocities and quality factors of gas‐hydrate‐bearing sediments as a function of pore pressure, temperature, frequency and partial saturation. The model is based on a Biot‐type three‐phase theory that considers the existence of two solids (grains and gas hydrate) and a fluid mixture. Attenuation is described with the constant‐Q model and viscodynamic functions to model the high‐frequency behaviour. We apply a uniform gas/water mixing law that satisfies Wood's and Voigt's averages at low and high frequencies, respectively. The acoustic model is calibrated to agree with the patchy‐saturation theory at high frequencies (White's model). Pressure effects are accounted by using an effective stress law for the dry‐rock moduli and permeabilities. The dry‐rock moduli of the sediment are calibrated with data from the Cascadia margin. Moreover, we calculate the depth of the bottom simulating reflector (BSR) below the sea floor as a function of sea‐floor depth, geothermal gradient below the sea floor, and temperature at the sea floor.  相似文献   

12.
The shear wave velocity is one of the important parameters in seismic engineering.The common mathematical models of relationship between shear wave velocity and depth of soil-layers are linear function model,quadratic function model,power function model,cubic function model,and quartic function model.It is generally believed that the regression formulae based on aforementioned mathematical models are mainly used for preliminary estimation of the local shear wave velocity.In order to increase the value of test data of wave speed in boreholes,the calculation formulae for the thickness of ground cover layer are derived based on the aforementioned mathematical models and their fitting parameters.The calculation formulae for the mean shear wave velocity of soil-layers are derived by integral mean value theorem.Accordingly,the calculation formulae for the equivalent shear wave velocity of soil-layers are derived.The calculation formulae for the depth of reflective waves in time-depth conversion of the reflection seismic exploration are derived.Through the statistical analysis of test data of shear wave velocity of soil layers in Changyuan County,Henan Province,regression formulae and their fitting parameters of aforementioned mathematical models are obtained.The results show that in the determination of the quality of these regression formulae and their fitting parameters,the adjusted R-square,root mean square error and residual error,the matching on the statistical range between the geometry of function of mathematical models used and the scattergram of the measured data,the application purpose and the simplicity of the regression formulae should be considered.With the aforementioned new formulae,the results show that the calculated values of equivalent shear wave velocity of soil-layers and thickness of ground cover layer meet the engineering needs.The steps for statistics and applications of the relationship between shear wave velocity and depth of soil-layers for a new area are as follows:(1) Analyze the relevant data about the site such as the drilling and wave speed test data,etc.and divide the site into seismic engineering geological units;(2) In a single seismic engineering geological unit,make statistical analysis of the data of borehole wave speed test,comprehensively identify and select mathematical models and their fitting parameters of the relationship between shear wave velocity and depth of soil-layers;(3) Substitute the selected fitting parameters into the formulae,based on their mathematical models for the thickness of ground cover layer,or the equivalent shear wave velocity of soil-layers,or the depth of reflective wave,then the thickness of ground covering layer,equivalent shear wave velocity,and depth of reflective wave are obtained.  相似文献   

13.
Two areas within Sydney Harbour were surveyed in 2002 with a helicopter‐borne time‐domain electromagnetic system to test its potential for bathymetric mapping in shallow seawater. As delivered, the data were improperly calibrated. Therefore a re‐calibration was performed to reconcile the measured data with ‘ground truth’. Synthetic electromagnetic transients were computed for two‐layer models representing the seawater and the sediment overlying bedrock at a number of locations within the survey area. The seawater depth in the models varied between 3 m and 70 m. The measured and calculated data were compared at each delay time, and were found to be linearly related. The slope and intercept of the line of best fit were used to correct all the measured data. Inversion of the corrected time‐domain electromagnetic data generally resolved the bathymetry to submetre accuracy down to depths of about 55 m.  相似文献   

14.
A method to obtain underwater topography for coastal areas using state-of-the-art remote sensing data and techniques worldwide is presented. The data from the new Synthetic Aperture Radar (SAR) satellite TerraSAR-X with high resolution up to 1 m are used to render the ocean waves. As bathymetry is reflected by long swell wave refraction governed by underwater structures in shallow areas, it can be derived using the dispersion relation from observed swell properties. To complete the bathymetric maps, optical satellite data of the QuickBird satellite are fused to map extreme shallow waters, e.g., in near-coast areas. The algorithms for bathymetry estimation from optical and SAR data are combined and integrated in order to cover different depth domains. Both techniques make use of different physical phenomena and mathematical treatment. The optical methods based on sunlight reflection analysis provide depths in shallow water up to 20 m in preferably calm weather conditions. The depth estimation from SAR is based on the observation of long waves and covers the areas between about 70- and 10-m water depths depending on sea state and acquisition quality. The depths in the range of 20 m up to 10 m represent the domain where the synergy of data from both sources arises. Thus, the results derived from SAR and optical sensors complement each other. In this study, a bathymetry map near Rottnest Island, Australia, is derived. QuickBird satellite optical data and radar data from TerraSAR-X have been used. The depths estimated are aligned on two different grids. The first one is a uniform rectangular mesh with a horizontal resolution of 150 m, which corresponds to an average swell wavelength observed in the 10 × 10-km SAR image acquired. The second mesh has a resolution of 150 m for depths up to 20 m (deeper domain covered by SAR-based technique) and 2.4 m resolution for the shallow domain imaged by an optical sensor. This new technique provides a platform for mapping of coastal bathymetry over a broad area on a scale that is relevant to marine planners, managers, and offshore industry.  相似文献   

15.
Captured CO2 could be deliberately injected into the ocean at great depth, where most of it would remain isolated from the atmosphere for centuries. CO2 can be transported via pipeline or ship for release in the ocean or on the sea floor. In Taiwan, CO2 release is preliminarily projected from 2010 to 2030 in an average amount of 6.957 Gt within this duration. If deep sea sequestration for CO2 can be the possible option in Taiwan, it seems to exists possible potential area delimited between 122.0°E to 122.5°E and 21.8°N to 22.3°N for CO2 sequestration on account of its isolated and flat topography. Apparently, the area to the southeast of Taiwan is found to reach a depth deeper than −3,000 m and can be taken as a testing area for pilot studies. This study searches the area using the contours from the depth of −4,554 to −5,500 m with 1-m interval; the area, topographic volume, maximum mean height (volume/area), and ocean volume are reported. If the emission rate is kept constantly, for 20-year storage it needs 3 m of thickness reaching the sea ridge at the depth −4,554 m using top-down style; for 100 years of storage it needs 12 m. On the other hand, if it accounts for the bottom the sea floor is taken as the reference and the accumulated CO2 is stored from the depth at −4,900 m using bottom-up style, it requires about 37 m for the 20-year storage and 61 m for one decade.  相似文献   

16.
Captured CO2 could be deliberately injected into the ocean at great depth, where most of it would remain isolated from the atmosphere for centuries. CO2 can be transported via pipeline or ship for release in the ocean or on the sea floor. No matter what for medium depth or deep sea, it appears that a potential area exists between 122–122.5°E and 21.8–22.3°N for CO2 sequestration. The east coast of Taiwan can be a candidate for CO2 temporary storage or transmitted plant. To have whole picture of assessment of sea level fluctuation, a completed statistical summary of seasonal sea level at six tidal gauge stations along the east coast of Taiwan is provided herein. Seasonal sea level time series is analyzed using spectral analysis in frequency domain to identify periodic component and phase propagation, especially for the astronomical-driven tidal effects. It identifies that the semi-diurnal and diurnal components in the resultant time series are related to astronomical tides M2, and K1 and O1, respectively. It demonstrates a full analysis of sea level variations, and results can be useful when construction of testing or operating facilities on sea surface becomes desirable in the future.  相似文献   

17.
中国海及邻域重力场特征及其构造解释   总被引:7,自引:3,他引:7  
利用中国海及邻域 2’× 2’由Seaset,Geosat,ERS 1及TOPEX/POSEIDON等卫星测高资料解算的自由空气重力异常 ,结合ETOPO5全球海底地形资料计算了中国海及邻域布格重力异常 ,并反演了得到了中国海及邻域地壳厚度 .经对重力异常特征进行分析 ,讨论了重力异常与大地构造及其活动的相关性 .  相似文献   

18.
Disturbance of the seabed resulting from bottom trawling affects ecosystem processes, such as the rate and magnitude of nutrient regeneration. The potential responses of the plankton community arising from such effects can be modelled, provided that reliable data on the effects on nutrient fluxes are available. In a north Cretan outer continental shelf and upper slope fishing ground (Heraklion Bay, Crete, Eastern Mediterranean) we applied a new field instrument which can simulate the passage of trawl groundropes across the sea floor and made direct seasonal measurements of the rate of dissolved and particulate nutrient releases resulting from seabed disturbance. These observational data were then integrated in a 3D ecosystem model. Results revealed that bottom trawling may trigger off considerable productivity pulses, in addition to pulses from the natural seasonal cycle.  相似文献   

19.
For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head‐dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal‐area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east‐west. Custom map projection parameters can also minimize area and length error in non‐ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.  相似文献   

20.
Two years after the Prestige oil spill (POS) an assessment of the effects on benthic fauna was carried out using the data obtained in five multidisciplinary surveys. Otter trawl, beam trawl, suprabenthic sled and box corer were used to study the main benthic compartments, along eight transects perpendicular to the coastline. Beam trawl was also employed to quantify the amount of tar aggregates on the continental shelf. No significant correlations between tar aggregates and species richness, biomass and diversity of benthic communities were found. This result was corroborated when the role of depth, season, latitude and sediment characteristics was examined by canonical ordination, in which POS-related variables had low influence on spatial distribution patterns. Depth and sediment grain diameter profoundly influence epibenthic communities. Sediment organic content is a third key variable for the infaunal, suprabenthic and lower-sized epibenthic communities, but not for the larger epibenthic communities. Nevertheless, a decrease in the densities of several epibenthic indicators was detected the first year after spill, followed by a noteworthy recovery in 2004. Non-macroscopic toxicity and some oceanographic agents are suggested as possible causes of these shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号