首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   

2.
Abstract Blueschists occurring as layers in calcite marbles of the Meliata unit occur along the so-called Roznava tectonic line situated in the southern part of the Gemericum, Slovakia. Mineral assemblages and compositions from seven blueschists localities and one occurrence of amphibolite facies rocks overprinted by blueschist metamorphism were investigated. The most common minerals in the blueschists are blue amphibole, epidote and albite. Some Fe2+- and Al-rich rocks also contain garnet and chloritoid, respectively. Na-pyroxene with a maximum 50% jadeite component was also found. The blue amphiboles correspond mostly to crossite and also to glaucophane and ferroglaucophane in some samples. Almandine- and spessartine-rich garnet has very low MgO content (<3 wt%). The Si content in phengite ranges between 3.3 and 3.5 pfu calculated on the basis of 11 oxygens. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during a prograde stage of metamorphism. The P-T conditions of metamorphism are estimated to be about 380–460° C and 10–13 kbar. Pressures of 7.5–8.5 kbar and temperatures of 350–370° C were obtained for some actinolite- and aegirine-rich rocks. Apart from chlorite, other mafic minerals formed during retrograde metamorphism are biotite and occasionally also actinolite.  相似文献   

3.
The Siuna Serpentinite Mélange (SSM) is a subduction-zone-related complex that contains diverse blocks of igneous and sedimentary origin, overprinted by various metamorphic conditions. The SSM is located at the southern border of the Chortís block and marks the boundary between continental and oceanic crusts in the western margin of the Caribbean Plate. The serpentinite matrix mainly consists of lizardite/chrysotile, Cr-rich spinel, and relict orthopyroxene that suggest a harzburgitic protolith and an upper mantle supra-subduction zone origin. Blocks within the southern and central regions range from Jurassic pelagic sediments to mafic/intermediate igneous rocks that are metamorphosed to various degrees, ranging from prehnite-pumpellyite/greenschist to likely blueschist facies (e.g. riebeckite-bearing metashale) conditions. In contrast, the northern section encloses almost exclusively epidote-amphibolite facies metabasite blocks, and minor mica- and chlorite-rich rocks of metasomatic origin, respectively. Some of the epidote-amphibolite blocks contain relic garnet-rich zones embedded in an amphibole-rich matrix. The garnets appear to record two generations of growth and contain mineral inclusions such as amphibole, apatite, titanite, aegirine-augite, and quartz. Thermobarometric estimates for the garnet-rich zones and epidote-amphibolite-rich matrix suggest a prograde blueschist facies at ~1.2 GPa and 400–450°C, an eclogite facies metamorphic peak at 1.5–1.7 GPa and 565–614°C, and a post-peak epidote-amphibolite facies metamorphism. These pressure and temperature estimates indicate a classical clockwise PT path that has been observed in many palaeo-subduction zone environments worldwide. Phengite Ar–Ar dating of mica-rich rock yields 140 Ma and suggests an Early Cretaceous exhumation along the southern edge of the continental Chortís block.  相似文献   

4.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

5.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

6.
Abstract The Western Baja terrane (WBt) of west-central Baja California is an uplifted subduction complex that is divided into smaller 'subterranes'on the basis of bounding faults and petrological differences. Each subterrane contains coherent Early Jurassic to Early Cretaceous sedimentary and mafic volcanic rocks (not melange) that have been metamorphosed under blueschist facies conditions. Key phases in metabasites and metaturbidites include jadeitic to acmitic clinopyroxene, sodic amphibole, lawsonite, aragonite, chlorite, titanite and white mica. Pressure indicators include the jadeite content of clinopyroxene and the presence of aragonite. Temperature indicators include the presence of lawsonite, the absence of greenschist facies minerals and results from vitrinite reflectance studies. Conditions at the peak of metamorphism were >8 kbar, 225–325°C for subterrane 1, 7–8 kbar, 170–220°C for subterrane 2, and 5–6 kbar, 175–200°C for subterrane 3; these correspond to cold geothermal gradients (6–9/km). Vein assemblages that include aegerine–jadeite and aegerine, albite, aragonite, lawsonite and sodic amphibole indicate uplift during continued cold conditions, probably during steady-state subduction.  相似文献   

7.
Abstract Two blueschist belts in the North Qilian Mountains occur in Middle Cambrian and Lower Ordovician strata and strike N30–35°W for about 500 km along the Caledonian fold belt on the south-west margin of the Sino-Korean plate. The styles of metamorphism and deformation are quite different in the two belts. The Middle Cambrian to Ordovician rocks in the high-grade belt are mainly blueschists and C-type eclogites in which six phases of lower and upper crustal deformation have been recognized. The rocks contain glaucophane, phengite, epidote, clinozoisite, chlorite, garnet, stilpnomelane, piedmontite, albite, titanite and quartz. The estimated P–T conditions of eclogites are 340 ± 10°C, 8 ± 1 kbar and, of blueschist, >380°C, 6–7 kbar. The Ordovician rocks in the low-grade belt are characterized by ductile to brittle deformation in the middle to upper crust. The low-grade blueschists contain glaucophane, lawsonite, pumpellyite, aragonite, albite and chlorite. The estimated P–T conditions are 150–250°C and 4–7 kbar.
K–Ar and 39Ar/40Ar geochronology on glaucophane and phengite from the high-grade blueschist belt suggest two stages of metamorphism at 460–440 and 400–380 Ma, which may represent the times of subduction and orogeny. The subduction metamorphism of the northern low-grade blueschist belt took place approximately at the end of the Ordovician.  相似文献   

8.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

9.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

10.
Polymetamorphic units are important constituents of continent–continent collisional orogens, and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision. This study reports the metamorphic conditions and evolution of the Dorud–Azna metamorphic units in the central part of the Sanandaj–Sirjan zone (SSZ), Iran. Here, new geothermobarometry results are integrated with 40Ar/39Ar mineral and Th–U–Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ, the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units. In the Amphibolite-Metagabbro unit, staurolite micaschist underwent a prograde P–T evolution from 640 ± 20 °C/6.2 ± 0.8 kbar in garnet cores (M1) to 680 ± 20 °C/7.2 ± 1.0 kbar in garnet rims (M2). Three Th–U–Pb monazite ages of 306 ± 5 Ma, 322 ± 28 Ma and 336 ± 39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism. In the same unit, the metagabbro records P–T conditions of 4.0 ± 0.8 kbar and 580 ± 50 °C in the (magmatic) amphibole core (Late Carboniferous intrusion) to 7.5 ± 0.7 kbar and 700 ± 20 °C in the amphibole rim indicating a prograde P–T path during subsequent burial (M1). New 40Ar/39Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36 ± 12 Ma to 170 ± 2 Ma. This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca. 425 ± 25 °C after M2 metamorphism and a Paleogene low-grade metamorphic overprint (M3), while 40Ar/39Ar white mica dating of garnet micaschist yielded a plateau age of 137.84 ± 0.65 Ma. We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma. Furthermore, it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism (at temperatures of ~350–240 °C) during final shortening and exhumation. In the underlying Galeh-Doz unit, the Panafrican granitic orthogneiss intruded at P–T conditions of 3.2 ± 4 kbar and 700 ± 20 °C, then it was metamorphosed and deformed at 600 ± 50 °C and 2.0 ± 0.8 kbar (metamorphic stage M1) prior to Late Carboniferous intrusion of mafic dikes. 40Ar/39Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma, representing the age of cooling through ca. 500 °C after the M1 metamorphic event. Interestingly, the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P–T conditions and final thick-skinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex. Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism, as result of rifting. We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean. Eventually, the investigated units reflect various stages of a Wilson cycle, from rifting to initiation of the subduction in final plate collision.  相似文献   

11.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   

12.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

13.
The north-west Turkish blueschists represent a subducted passive continental margin sequence dominated by metaclastic rocks and marble. The depositional age of the blueschist protoliths are probably Palaeozoic to Mesozoic, while the age of the high-pressure/low-temperature metamorphism is Late Cretaceous. Blueschists are tectonically overlain by a volcanosedimentary sequence made up of accreted oceanic crustal material that locally shows incipient blueschist metamorphism and by spinel peridotite slices. The metaclastic rocks with regional jadeite and glaucophane, which comprise the lower part of the blueschist unit, make up an over 1000-m-thick coherent sequence in the Kocasu region of north-west Turkey. Rare metabasic horizons in the upper parts of the metaclastic sequence with sodic amphibole + Iawsonite but no garnet indicate lawsonite blueschist facies metamorphism. The blueschist metaclastics in the Kocasu region are practically free of calcium and ferric iron and closely approximate the NFMASH system in bulk composition. Two low-variance mineral assemblages (with quartz and phengite) are jadeite + glaucophane + chlorite + paragonite and chloritoid + glaucophane + paragonite. The metaclastics comprise up to several-metres-thick layers of jadeite schist with quartz, phengite and nearly 100 mol% jadeite. Phase relations in the metaclastics show that the chloritoid + glaucophane assemblage, even in Fe2+-rich compositions, is stable in the jadeite stability field. In the NFASH system the above assemblage without the accompanying garnet has a narrow thermal stability field. Mineral equilibria in the metaclastics involving chloritoid, glaucophane, jadeite, paragonite and chlorite indicate metamorphic P-T conditions of 20 ± 2 kbar and 430 ± 30 d? C, yielding geothermal gradients close to 5d? C km-1, one of the lowest geotherms recorded. Blueschists in the Kocasu region, which have been buried to 70 km depth, are tectonically overlain by the volcanosedimentary sequence and by peridotite buried not deeper than 30 km. Phengites from two jadeite schists were dated by Ar/Ar laser probe; they give an age of 88.5 ± 0.5 Ma, interpreted as the age of metamorphism. Blueschists and the overlying peridotite bodies are intruded by 48-53-Ma-old granodiorite bodies that were emplaced at 10 km depth. This suggests that the exhumation of blueschists by underplating of cold continental crust, and normal faulting at the blueschist-peridotite, interface occurred during the Late Cretaceous to Palaeocene (88-53 Ma).  相似文献   

14.
The chemical composition of fluid inclusions in quartz crystals from Alpine fissure veins was determined by combination of microthermometry, Raman spectroscopy, and LA-ICPMS analysis. The veins are hosted in carbonate-bearing, organic-rich, low-grade metamorphic metapelites of the Bündnerschiefer of the eastern Central Alps (Switzerland). This strongly deformed tectonic unit is interpreted as a partly subducted accretionary wedge, on the basis of widespread carpholite assemblages that were later overprinted by lower greenschist facies metamorphism. Veins and their host rocks from two locations were studied to compare several indicators for the conditions during metamorphism, including illite crystallinity, graphite thermometry, stability of mineral assemblages, chlorite thermometry, fluid inclusion solute thermometry, and fluid inclusion isochores. Fluid inclusions are aqueous two-phase with 3.7–4.0 wt% equivalent NaCl at Thusis and 1.6–1.7 wt% at Schiers. Reproducible concentrations of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Al, Mn, Cu, Zn, Pb, As, Sb, Cl, Br, and S could be determined for 97 fluid inclusion assemblages. Fluid and mineral geothermometry consistently indicate temperatures of 320 ± 20 °C for the host rocks at Thusis and of 250 ± 30 °C at Schiers. Combining fluid inclusion isochores with independent geothermometers results in pressure estimates of 2.8–3.8 kbar for Thusis, and of 3.3–3.4 kbar for Schiers. Pressure–temperature estimates are confirmed by pseudosection modeling. Fluid compositions and petrological modeling consistently demonstrate that chemical fluid-rock equilibrium was attained during vein formation, indicating that the fluids originated locally by metamorphic dehydration during near-isothermal decompression in a rock-buffered system.  相似文献   

15.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

16.
A stratigraphically coherent blueschist terrane near Aksu in northwestern China is unconformably overlain by unmetamorphosed sedimentary rocks of Sinian age (~600 to 800 Ma). The pre-Sinian metamorphic rocks, termed the Aksu Group, were derived from shales, sandstones, basaltic volcanic rocks, and minor cherty sediments. They have undergone multi-stage deformation and transitional blueschist/greenschist-facies metamorphism, and consist of strongly foliated chlorite-stilpnomelane-graphite schist, stilpnomelane-phengite psammitic schist, greenschist, blueschist, and minor quartzite, metachert, and meta-ironstone. Metamorphic minerals of basaltic blueschists include crossitic amphibole, epidote, chlorite, albite, quartz, and actinolite. Mineral parageneses and compositions of sodic amphibole suggest blueschist facies recrystallization at about 4 to 6 kbar and 300 to 400° C. Many thin diabasic dikes cut the Aksu Group; they are characterized by high alkali, TiO2, and P2O5 contents and possess geochemical characteristics of within-plate basalts; some of these diabasic rocks contain sodic clinopyroxene and amphibole as primary phases and have minor pumpellyite, albite, epidote, chlorite, and calcite as the prehnite/pumpellyite-facies metamorphic assemblage. This prehnite/pumpellyite-facies overprint did not affect the host rocks of the blueschist-facies lithologies.

K-Ar and Rb-Sr ages of phengite and whole rocks from pelitic schists are ~690 to 728 Ma, and a 40Ar/39Ar age of crossite from the blueschist is 754 Ma. The basal conglomerate of the overlying Sinian to Eocambrian sedimentary succession contains clasts of both the blueschist and cross-cutting dike rocks, clearly demonstrating that conditions required for blueschist-facies metamorphism were attained and ceased at least 700 Ma. The northward-increasing metamorphic grade of the small blueschist terrane may reflect northward subduction of an accretionary complex beyond the northern edge of the Tarim craton. Abundant subparallel diabasic dikes indicate a subsequent period of Pre-Sinian rifting and diabasic intrusion along the northern margin of Tarim; a Sinian siliciclastic and carbonate sequence was deposited unconformably atop the Aksu Group and associated diabase dikes.  相似文献   

17.
《地学前缘(英文版)》2018,9(6):1795-1807
The high-to ultrahigh-pressure metamorphic rocks of the Atbashy complex were petrologically investigated. The eclogites of the Choloktor Formation show a prograde evolution from epidote-blueschist facies(P = 17-21 kbar and T = 450-515 ℃) to peak eclogite-UHP conditions(P = 26-29 kbar and T = 545-615 ℃) with a subsequent epidote-amphibolite and greenschist facies overprint. The micaschists of the Choloktor Formation also show a clockwise P-T path from blueschist/epidote-blueschist facies conditions through peak eclogite facies conditions(P = 21-23 kbar and T = 530-580 ℃) to retrograde epidote-amphibolite and greenschist facies stages. A comparison of the P-T paths in the eclogites and mica-schists of Choloktor Formation reveal that they may have shared their P-T history from peak to retrograde stages. The mica-schists of the Atbashy Formation record peak metamorphism of P = 10-12 kbar and T = 515-565 ℃, which indicates that the highest grade of regional metamorphism in the Atbashy Ridge was epidote-amphibolite facies.The newly obtained P-T conditions for the mica-schists of Choloktor Formation indicate that sheets of sedimentary rocks were brought to great depths along the subduction zone and they metamorphosed under eclogite facies HP conditions. The eclogite blocks were amalgamated with mica-schists of Choloktor Formation in the eclogite facies HP conditions and together they experienced isothermal decompression to ~40 km. During this path, the eclogites and mica-schists of Choloktor Formation docked with mica-schists of Atbashy Formation at 10-12 kbar and 515-565 ℃, and from this depth(~40 km) the whole sequence was exhumed together. These new results improve our understanding of high-pressure metamorphism in subduction-related accretionary prism zones and the exhumation processes of deeply-seated rocks in the Atbashy HP-UHP complex.  相似文献   

18.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

19.
The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressure–temperature (P–T) histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lu–Hf geochronological results for mafic rocks of the Halilba?? Complex (Anatolia) that evolved along different thermal gradients. Samples include a lawsonite–epidote blueschist, a lawsonite–epidote eclogite, and an epidote eclogite (all with counter-clockwise P–T paths), a prograde lawsonite blueschist with a “hairpin”-type P–T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at ~0.6–0.7 GPa and 800–850 °C, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420 °C to 2.6 GPa and 520 °C. Well-defined Lu–Hf isochrons were obtained for the epidote eclogite (92.38 ± 0.22 Ma) and the lawsonite–epidote blueschist (90.19 ± 0.54 Ma), suggesting rapid garnet growth. The lawsonite–epidote eclogite (87.30 ± 0.39 Ma) and the prograde lawsonite blueschist (ca. 86 Ma) are younger, whereas the garnet amphibolite (104.5 ± 3.5 Ma) is older. Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at ~104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lu–Hf garnet dates (between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims (as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilba?? Complex were subjected to continuous return flow, with “warm” rocks being exhumed during the tectonic burial of “cold” ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating.  相似文献   

20.
The Malpica–Tui Unit (Galicia, NW Spain) records eclogite‐ and blueschist‐facies metamorphism during the onset of the Variscan orogeny in Europe. Petrological analysis involving pseudosections calculated using thermocalc shows that the Upper Sheet of this unit, the Ceán Schists, recorded a three‐stage metamorphic evolution involving (i) Early subduction‐related medium‐pressure/low‐temperature metamorphism (M1) constrained at ~350–380 °C, 12–14 kbar, which is only recorded in the basal part (lower metapelites, LM) of the Ceán Schists. (ii) Subduction‐related blueschist facies prograde metamorphism (M2) going from ~19 kbar, 420 °C to 21 kbar, 460 °C in the LM, and from 16 kbar 430 °C to 21–22 kbar, 520 °C in the structurally upper metapelites (UM). (iii) Exhumation‐related metamorphism (M3) is characterized by a decompression to 8–10 kbar, 470–490 °C in the LM. This decompression is also recorded in the UM, but it was not possible to estimate precise P–T conditions. The calculations indicate that (i) the prograde evolution in subduction zones may occur in fluid‐undersaturated conditions due to the crystallization of lawsonite, even in metapelitic rocks. This significantly influences phase equilibria and hence the P–T estimates. (ii) The proportion of ferric iron also has a strong influence on phase equilibria, even in metapelites. However, the analysed values of Fe2O3 may not reflect the oxidation state during the main metamorphic evolution and are probably easily modified by superficial alteration even in apparently fresh samples. The use of PTX(Fe2O3) pseudosections together with petrographic observations is then necessary to estimate the real oxidation state of the rocks and correctly evaluate the P–T conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号