首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO2 GHG emissions. As a result, we found that global agricultural non-CO2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.  相似文献   

2.
Drastic reductions of greenhouse-gas (GHG) emissions are required to meet the goal of the 2015 Paris climate accord to limit global warming to 1.5–2.0 °C over pre-industrial levels. We introduce the material stock-flow framework as a novel way to develop scenarios for future GHG emissions using methods from social metabolism research. The basic assumption behind our exploratory scenario approach is that nearly all final energy is required to either expand and maintain stocks of buildings, infrastructures and machinery or to provide services by using them. Distinguishing three country groups, we develop GDP- and population-driven scenarios for the development of these material stocks and the corresponding energy requirements based on historically calibrated model parameters. We analyze the results assuming different future pathways of CO2 emissions per unit of primary energy. The resulting cumulative carbon emissions from 2018 to 2050 range from 361 Gt C in the lower GDP-driven to 568 GtC in the higher population-driven scenario. The findings from the population-driven scenarios point towards the huge implications of a hypothetical convergence of per-capita levels of material stocks assuming current trajectories of technological improvements. Results indicate that providing essential services with a considerably lower level of material stocks could contribute to large reductions in global resource demand and GHG emissions. A comparison of different stock levels in 2050 demonstrates that complying with ambitious climate targets requires much faster declines of CO2 emissions per unit of primary energy if growth of material stocks is not limited.  相似文献   

3.
Agriculture is responsible for 25?C30% of global anthropogenic greenhouse gas (GHG) emissions but has thus far been largely exempted from climate policies. Because of high monitoring costs and comparatively low technical potential for emission reductions in the agricultural sector, output taxes on emission-intensive agricultural goods may be an efficient policy instrument to deal with agricultural GHG emissions. In this study we assess the emission mitigation potential of GHG weighted consumption taxes on animal food products in the EU. We also estimate the decrease in agricultural land area through the related changes in food production and the additional mitigation potential in devoting this land to bioenergy production. Estimates are based on a model of food consumption and the related land use and GHG emissions in the EU. Results indicate that agricultural emissions in the EU27 can be reduced by approximately 32 million tons of CO2-eq with a GHG weighted tax on animal food products corresponding to ?60 per ton CO2-eq. The effect of the tax is estimated to be six times higher if lignocellulosic crops are grown on the land made available and used to substitute for coal in power generation. Most of the effect of a GHG weighted tax on animal food can be captured by taxing the consumption of ruminant meat alone.  相似文献   

4.
Over the last three decades, socio-economic, demographic and technological transitions have been witnessed throughout the world, modifying both sectorial and geographical distributions of greenhouse gas (GHG) emissions. Understanding these trends is central to the design of current and future climate change mitigation policies, requiring up-to-date methodologically robust emission inventories such as the Emissions Database for Global Atmospheric Research (EDGAR), the European Commission’s in-house, independent global emission inventory. EDGAR is a key tool to track the evolution of GHG emissions and contributes to quantifying the global carbon budget, providing independent and systematically calculated emissions for all countries.According to the results of the EDGAR v.5.0 release, total anthropogenic global greenhouse gas emissions (excluding land use, land use change and forestry) were estimated at 49.1 Gt CO2eq in 2015, 50 % higher than in 1990, despite a monotonic decrease in GHG emissions per unit of economic output. Between 1990 and 2015, emissions from developed countries fell by 9%, while emissions from low to medium income countries increased by 130%, predominantly from 2000 onwards. The 27 Member States of the European Union and the United Kingdom led the pathway for emission reductions in industrialised economies whilst, in developing countries, the rise in emissions was driven by higher emissions in China, India, Brazil and nations in the South-East Asian region. This diversity of patterns shows how different patterns for GHG emissions are and the need for identifying regionally tailored emission reduction measures.  相似文献   

5.
Since 1970, global agricultural production has more than doubled with agriculture and land-use change now responsible for ∼1/4 of greenhouse gas emissions from human activities. Yet, while greenhouse gas (GHG) emissions per unit of agricultural product have been reduced at a global level, trends in world regions have been quantified less thoroughly. The KPI (Kaya-Porter Identity) is a novel framework for analysing trends in agricultural production and land-use change and related GHG emissions. We apply this to assess trends and differences in nine world regions over the period 1970–2007. We use a deconstructed analysis of emissions from the mix of multiple sources, and show how each is changing in terms of absolute emissions on a per area and per produced unit basis, and how the change of emissions from each source contributes to the change in total emissions over time. The doubling of global agricultural production has mainly been delivered by developing and transitional countries, and this has been mirrored by increased GHG emissions. The decoupling of emissions from production shows vast regional differences. Our estimates show that emissions per unit crop (as kg CO2-equivalents per Giga Joule crop product), in Oceania, have been reduced by 94% from 1093 to 69; in Central & South America by 57% from 849 to 362; in sub-Saharan Africa by 27% from 421 to 309, and in Europe by 56% from 86 to 38. Emissions per unit livestock (as kg CO2-eq. GJ−1 livestock product) have reduced; in sub-Saharan Africa by 24% from 6001 to 4580; in Central & South America by 61% from 3742 to 1448; in Central & Eastern Asia by 82% from 3,205 to 591, and; in North America by 28% from 878 to 632. In general, intensive and industrialised systems show the lowest emissions per unit of agricultural production.  相似文献   

6.
Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2–Eq yr–1 in1990 to 52 Tg CO2–Eq yr–1 in 2008. Adoption of thesink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2–Eq yr–1 (L), 42 TgCO2–Eq yr–1 (M) or 36 Tg CO2–Eq yr–1 (H). Among thesink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation andmanure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992).  相似文献   

7.
Global agricultural development programs aim to support smallholder farmers and farming communities by strengthening sustainable and resilient food production systems – which can also promote climate change mitigation as a co-benefit by reducing the emissions and enhancing removals of greenhouse gases (GHG). This study presents estimated GHG emissions reductions of almost 100 agricultural development projects over 51 low- and middle-income countries supported by the International Fund for Agriculture Development (IFAD), USAID-Feed the Future (FTF) Initiative, and Foreign, Commonwealth and Development Office (FCDO, previously DfID). Together, these projects promoted a net GHG emissions reduction of 6.5 MtCO2e per year. The forest management and promotion of improved agroforestry systems in the project areas contributed the most to the total mitigation co-benefits of the investment portfolios (∼3.9 MtCO2e/y). Improved crop management with minimum tillage practices, residue incorporation, water management in paddy rice, and the use of organic fertilizers also made a large contribution to the GHG emissions reduction (∼1.5 MtCO2e/y). Grass and pasture land management across the selected projects account for a net emission reduction of 0.2 MtCO2e/y. The implementation of improved agricultural practices in combination proves more effective for improving productivity and generating mitigation co-benefits than used in isolation. However, the aggregate impacts of soil organic carbon (SOC) sequestration should be interpreted carefully, which quickly can be lost quick. The interventions promoted by the global agricultural development programs have shown immense potential in reducing net GHG emissions or emission intensity in agriculture and allied sectors. For moving forward to achieve the net-zero and 1.5 °C goals including food security, the global agriculture development programs need to prioritize working on agriculture policy development and implementation so that agriculture expansion does not continue to drive land-use change. This needs to move from the traditional agriculture development programs to transformational changes.  相似文献   

8.
Climate change and critical thresholds in China’s food security   总被引:2,自引:0,他引:2  
Identification of ‘critical thresholds’ of temperature increase is an essential task for inform policy decisions on establishing greenhouse gas (GHG) emission targets. We use the A2 (medium-high GHG emission pathway) and B2 (medium-low) climate change scenarios produced by the Regional Climate Model PRECIS, the crop model – CERES, and socio-economic scenarios described by IPCC SRES, to simulate the average yield changes per hectare of three main grain crops (rice, wheat, and maize) at 50 km × 50 km scale. The threshold of food production to temperature increases was analyzed based on the relationship between yield changes and temperature rise, and then food security was discussed corresponding to each IPCC SRES scenario. The results show that without the CO2 fertilization effect in the analysis, the yield per hectare for the three crops would fall consistently as temperature rises beyond 2.5 ^C; when the CO2 fertilization effect was included in the simulation, there were no adverse impacts on China’s food production under the projected range of temperature rise (0.9–3.9 ^C). A critical threshold of temperature increase was not found for food production. When the socio-economic scenarios, agricultural technology development and international trade were incorporated in the analysis, China’s internal food production would meet a critical threshold of basic demand (300 kg/capita) while it would not under A2 (no CO2 fertilization); whereas basic food demand would be satisfied under both A2 and B2, and would even meet a higher food demand threshold required to sustain economic growth (400 kg/capita) under B2, when CO2 fertilization was considered.  相似文献   

9.
The Denitrification-Decompostion (DNDC) model was used to estimate the impact of change in management practices on N2O emissions in seven major soil regions in Canada, for the period 1970 to 2029. Conversion of cultivated land to permanent grassland would result in the greatest reduction in N2O emissions, particularly in eastern Canada wherethe model estimated about 60% less N2O emissions for thisconversion. About 33% less N2O emissions were predicted for a changefrom conventional tillage to no-tillage in western Canada, however, a slight increase in N2O emissions was predicted for eastern Canada. GreaterN2O emissions in eastern Canada associated with the adoption of no-tillage were attributed to higher soil moisture causing denitrification, whereas the lower emissions in western Canada were attributed to less decomposition of soil organic matter in no-till versus conventional tilled soil. Elimination of summer fallow in a crop rotation resulted in a 9% decrease in N2O emissions, with substantial emissions occurringduring the wetter fallow years when N had accumulated. Increasing N-fertilizer application rates by 50% increased average emissions by 32%,while a 50% decrease of N-fertilizer application decreased emissions by16%. In general, a small increase in N2O emissions was predicted when N-fertilizer was applied in the fall rather than in the spring. Previous research on CO2 emissions with the CENTURY model (Smith et al.,2001) allowed the quantification of the combined change in N2O andCO2 emissions in CO2 equivalents for a wide range of managementpractices in the seven major soil regions in Canada. The management practices that have the greatest potential to reduce the combined N2O andCO2 emissions are conversion from conventional tillage to permanent grassland, reduced tillage, and reduction of summer fallow. The estimated net greenhouse gas (GHG) emission reduction when changing from cultivated land to permanent grassland ranged from 0.97 (Brown Chernozem) to 4.24 MgCO2 equiv. ha–1 y–1 (BlackChernozem) for the seven soil regions examined. When changing from conventional tillage to no-tillage the net GHG emission reduction ranged from 0.33 (Brown Chernozem) to 0.80 Mg CO2 equiv. ha–1 y–1 (Dark GrayLuvisol). Elimination of fallow in the crop rotation lead to an estimated net GHG emission reduction of 0.43 (Brown Chernozem) to 0.80 Mg CO2 equiv.ha–1 y–1 (Dark Brown Chernozem). The addition of 50% more or 50% less N-fertilizer both resulted in slight increases in combined CO2 and N2O emissions. There was a tradeoff in GHG flux with greaterN2O emissions and a comparable increase in carbon storage when 50% more N-fertilizer was added. The results from this work indicate that conversion of cultivated land to grassland, the conversion from conventional tillage to no-tillage, and the reduction of summerallow in crop rotations could substantially increase C sequestration and decrease net GHG emissions. Based on these results a simple scaling-up scenario to derive the possible impacts on Canada's Kyoto commitment has been calculated.  相似文献   

10.
Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions.  相似文献   

11.
For agriculture, there are three major options for mitigating greenhouse gas (GHG) emissions: 1) productivity improvements, particularly in the livestock sector; 2) dedicated technical mitigation measures; and 3) human dietary changes. The aim of the paper is to estimate long-term agricultural GHG emissions, under different mitigation scenarios, and to relate them to the emissions space compatible with the 2 °C temperature target. Our estimates include emissions up to 2070 from agricultural soils, manure management, enteric fermentation and paddy rice fields, and are based on IPCC Tier 2 methodology. We find that baseline agricultural CO2-equivalent emissions (using Global Warming Potentials with a 100 year time horizon) will be approximately 13 Gton CO2eq/year in 2070, compared to 7.1 Gton CO2eq/year 2000. However, if faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070. If structural changes in human diets are included, emissions may be reduced further, to 3–5 Gton CO2eq/year in 2070. The total annual emissions for meeting the 2 °C target with a chance above 50 % is in the order of 13 Gton CO2eq/year or less in 2070, for all sectors combined. We conclude that reduced ruminant meat and dairy consumption will be indispensable for reaching the 2 °C target with a high probability, unless unprecedented advances in technology take place.  相似文献   

12.
Designing effective mitigation policies for greenhouse gas (GHG) emissions from agriculture requires understanding the mechanisms by which management practices affect emissions in different agroclimatic conditions. Agricultural GHG emissions and carbon sequestration potentials have been extensively studied in the Mediterranean biome, which is a biodiversity hot spot that is highly vulnerable to environmental changes. However, the absolute magnitude of GHG emissions and the extent to which research efforts match these emissions in each production system, are unknown. Here, we estimated GHG emissions and potential carbon sinks associated with crop and livestock production systems in the Mediterranean biome, covering 31 countries and assessing approximately 10,000 emission items. The results were then combined with a bibliometric assessment of 797 research publications to compare emissions estimates obtained with research efforts for each of the studied items. Although the magnitude of GHG emissions from crop production and the associated carbon sequestration potential (261 Tg CO2eq yr−1) were nearly half of those from livestock production (367 Tg CO2eq yr−1), mitigation research efforts were largely focused on the former. As a result, the relative research intensity, which relates the number of publications to the magnitude of emissions, is nearly one order of magnitude higher for crop production than for livestock production (2.6 and 0.4 papers Tg CO2eq−1, respectively). Moreover, this mismatch is even higher when crop and livestock types are studied separately, which indicates major research gaps associated with grassland and many strategic crop types, such as fruit tree orchards, fiber crops, roots and tubers. Most life cycle assessment studies do not consider carbon sequestration, although this single process has the highest magnitude in terms of annual CO2eq. In addition, these studies employ Tier 1 IPCC factors, which are not suited for use in Mediterranean environments. Our analytical results show that a strategic plan is required to extend on-site field GHG measurements to the Mediterranean biome. Such a plan needs to be cocreated among stakeholders and should be based on refocusing research efforts to GHG balance components that have been afforded less attention. In addition, the outcomes of Mediterranean field studies should be integrated into life cycle assessment-based carbon footprint analyses in order to avoid misleading conclusions.  相似文献   

13.
Previous research has demonstrated that soil carbon sequestration through adoption of conservation tillage can be economically profitable depending on the value of a carbon offset in a greenhouse gas (GHG) emissions market. However adoption of conservation tillage also influences two other potentially important factors, changes in soil N2O emissions and CO2 emissions attributed to changes in fuel use. In this article we evaluate the supply of GHG offsets associated with conservation tillage adoption for corn-soy-hay and wheat-pasture systems of the central United States, taking into account not only the amount of carbon sequestration but also the changes in soil N2O emission and CO2 emissions from fuel use in tillage operations. The changes in N2O emissions are derived from a meta-analysis of published studies, and changes in fuel use are based on USDA data. These are used to estimate changes in global warming potential (GWP) associated with adoption of no-till practices, and the changes in GWP are then used in an economic analysis of the potential supply of GHG offsets from the region. Simulation results demonstrate that taking N2O emissions into account could result in substantial underestimation of the potential for GHG mitigation in the central U.S. wheat pasture systems, and large over-estimation in the corn-soy-hay systems. Fuel use also has quantitatively important effects, although generally smaller than N2O. These findings suggest that it is important to incorporate these two effects in estimates of GHG offset potential from agricultural lands, as well as in the design of GHG offset contracts for more complete accounting of the effect that no-till adoption will have on greenhouse gas emissions.  相似文献   

14.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   

15.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

16.
The number of electric and electronic products (e-products) owned by Chinese households has multiplied in the past decade. In this study, we analyz the GHG emissions from e-products in Chinese households in order to understand and determine how to mitigate their effects on climate change. The results show that the usage stage of e-products has become an important source of GHG emissions in China, with total GHG emissions of these household e-products reaching about 663 million tons CO2 eq., accounting for about 8.85 % of all Chinese GHG emissions in 2012. The average GHG emission per household per year in China was 1538 kg CO2 eq. in 2012, a little higher than that of Norwegian households (1200 kg CO2 eq.). The electricity mix plays a very important role in GHG emissions, and the 78 % coal-fired power consumption accounted for 99.69 % of the total GHG emissions. Our research also supports the view that GHG emissions from household e-products increased with economic level. To reduce the GHG emissions of household e-products, the development of energy-saving e-products and changes to the electricity mix would be very effective measures.  相似文献   

17.
Carbon sequestration in agricultural soils is frequently promoted as a practical solution for slowing down the rate of increase of CO2 in the atmosphere. Consequently, there is a need to improve our understanding of how land management practices may affect the net removal of greenhouse gases (GHG) from the atmosphere. In this paper we examine the role of agriculture in influencing the GHG budget and briefly discuss the potential for carbon mitigation by agriculture. We also examine the opportunities that exist for increasing soil C sequestration using management practices such as reduced tillage, reduced frequency of summer fallowing, introduction of forage crops into crop rotations, conversion of cropland to grassland and nutrient addition via fertilization. In order to provide information on the impact of such management practices on the net GHG budget we ran simulations using CENTURY (a C model) and DNDC (a N model) for five locations across Canada, for a 30-yr time period. These simulations provide information on the potential trade-off between C sequestration and increased N2O emissions. Our model output suggests that conversion of cropland to grassland will result in the largest reduction in net GHG emissions, while nutrient additions via fertilizers will result in a small increase in GHG emissions. Simulations with the CENTURY model also indicated that favorable growing conditions during the last 15 yr could account for an increase of 6% in the soil C at a site in Lethbridge, Alberta. Presented at the International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change, Ljubljana, Slovenia, 7–9 October 2002.  相似文献   

18.
The Agriculture, forestry and other land use (AFOLU) sector as a whole accounts for more than 80% of the total greenhouse gas (GHG) emission in Nepal. This study estimates the GHG emissions from the AFOLU sector in the business as usual (BAU) case during 2010–2050 and identifies the economically attractive countermeasures to abate GHG emissions from the sector at different carbon prices. It also estimates the carbon price elasticity of GHG abatement from the sector. The study finds that enteric fermentation processes in the livestock and emissions from agricultural soils are the two major contributors of GHG emission in AFOLU sector. It identifies no-regret abatement options in the AFOLU sector that could mitigate about 41.5% of the total GHG emission during 2016–2050 in the BAU scenario. There would be a net cumulative carbon sequestration of 16 million tonnes of carbon dioxide equivalent (MtCO2e) at $10 per tonne of carbon dioxide equivalent (tCO2e) during the period. Carbon price above $75/tCO2e is not found to be much effective in achieving significant additional reduction in GHG emissions from the AFOLU sector.  相似文献   

19.
Previous attempts to estimate the supply of greenhouse gas emission reductions from reduced emissions from deforestation (RED) have generally failed to incorporate policy developments, country-specific abilities and political willingness to supply offsets for developed countries’ emissions. To address this, we estimate policy-appropriate projections of creditable emission reductions from RED. Two global forest carbon models are used to examine major assumptions affecting the generation of credits. The results show that the estimated feasible supply of RED credits is significantly below the biophysical mitigation potential from deforestation. A literature review identified an annual RED emission reduction potential between 1.6 and 4.3 Gt CO2e. Feasible RED supply estimates applying the OSIRIS model were 1.74 Gt CO2e annually between 2011 and 2020, with a cumulative supply of 17.4 Gt CO2e under an ‘own-efforts’ scenario. Estimates from the Forest Carbon Index were very low at $5/t CO2e with 8 million tonne CO2e annually, rising to 1.8 Gt CO2e at $20/t CO2e. Cumulative abatement between 2011 and 2020 was 9 billion Gt CO2e ($20/t CO2e). These volumes were lower, sometimes dramatically, at prices of $5/t CO2e suggesting a non-linear supply of credits in relation to price at a low payment level. For policy makers, the results suggest that inclusion of RED in a climate framework increases abatement potential, although significant constraints are imposed by political and technical issues.  相似文献   

20.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号