首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (\(p\,< \,0.001\)) between observations taken downwind of urban and rural areas. For example, urban heat advection from small urbanized areas (\(\sim \)1\(\,\hbox {km}^{2}\)) under low cloud cover and wind speeds of 2–3\(\,\hbox {m}\,\hbox {s}^{-1}\) is found to increase mean nocturnal air temperatures by 0.6\(\,^{\circ }\hbox {C}\) at a horizontal distance of 0.5 km. Fundamentally, these UHA results highlight the importance of careful interpretation of long-term temperature data taken near small urban areas.  相似文献   

2.
The influence of wave-associated parameters controlling turbulent \(\hbox {CO}_2\) fluxes through the air–sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air–sea \(\hbox {CO}_2\) fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of \(\hbox {CO}_2\) with a mean flux of \(-1.3\, \upmu \hbox {mol m}^{-2}\hbox {s}^{-1}\) (\(-41.6\hbox { mol m}^{-2}\hbox {yr}^{-1}\)). The results of a quantile-regression analysis computed between the \(\hbox {CO}_2\) flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.  相似文献   

3.
Mountain-top observations of greenhouse gas mixing ratios may be an alternative to tall-tower measurements for regional scale source and sink estimation. To investigate the equivalence or limitations of a mountain-top site as compared to a tall-tower site, we used the unique opportunity of comparing in situ measurements of methane (\(\hbox {CH}_{4}\)) and carbon dioxide (\(\hbox {CO}_{2}\)) mixing ratios at a mountain top (986 m above sea level, a.s.l.) with measurements from a nearby (distance 28.4 km) tall tower, sampled at almost the same elevation (1009 m a.s.l.). Special attention was given to, (i) how local wind statistics and greenhouse gas sources and sinks at the mountain top influence the observations, and (ii) whether mountain-top observations can be used as for those from a tall tower for constraining regional greenhouse gas emissions. Wind statistics at the mountain-top site are clearly more influenced by local flow systems than those at the tall-tower site. Differences in temporal patterns of the greenhouse gas mixing ratios observed at the two sites are mostly related to the influence of local sources and sinks at the mountain-top site. Major influences of local sources can be removed by applying a statistical filter (\(5{\mathrm{th}}\) percentile) or a filter that removes periods with unfavourable flow conditions. In the best case, the bias in mixing ratios between the mountain-top and the tall-tower sites after the application of the wind filter was \({-}0.0005\pm 0.0010\) ppm for methane (September, 0000–0400 UTC) and \(0.11\pm 0.18\) ppm for \(\hbox {CO}_{2}\) (February, 1200–1600 UTC). Temporal fluctuations of atmospheric \(\hbox {CH}_{4}\) and \(\hbox {CO}_{2}\) mixing ratios at both stations also showed good agreement (apart from \(\hbox {CO}_{2}\) during summertime) as determined by moving bi-weekly Pearson correlation coefficients (up to 0.96 for \(\hbox {CO}_{2}\) and 0.97 for \(\hbox {CH}_{4}\)). When only comparing mixing ratios minimally influenced by local sources (low bias and high correlation coefficients), our measurements indicate that mountain-top observations are comparable to tall-tower observations.  相似文献   

4.
The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two ‘first-order’ non-local and five ‘1.5-order’ local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to \(18\hbox { m s}^{-1}\) at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1–2 K) and drier (2–3\(\hbox { g kg}^{-1})\) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1–2\(\hbox { g kg}^{-1})\) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from ?40 to \(25\hbox { W m}^{-2}\), while the simulated fluxes range from ?40 to \(40\hbox { W m}^{-2}\); however, all of the schemes’ predictions are close to the observations under unstable conditions. Finally, all schemes overestimate the friction velocity, although the simulated range (from 0.2 to \(0.5\hbox { m s}^{-1})\) is narrower than that observed (from 0.1 to \(0.7\hbox { m s}^{-1})\).  相似文献   

5.
We present a portable elevator-based facility for measuring \(\hbox {CO}_{2}\), water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of \(20 \hbox { s}^{-1}\). Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of \(\hbox {CO}_{2}\) and \(\hbox {H}_{2}\hbox {O}\) over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin–Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of \(\hbox {CO}_{2}\), latent and sensible heat and momentum show good agreement with eddy-covariance measurements.  相似文献   

6.
Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley–PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009–31 December 2012) of CO and \(\hbox {CO}_{2}\) mixing-ratio measurements and supporting meteorological observations from Pinnacles (\(38.61^{\circ }\hbox {N}\), \(78.35^{\circ }\hbox {W}\), 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional \(\hbox {O}_{3}\) mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and \(\hbox {CO}_{2}\) mixing ratios vary as a function of the daytime maximum valley–PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley–PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.  相似文献   

7.
While the land-surface temperature (LST) observed at meteorological stations has significantly increased over the previous few decades, it is still unclear to what extent urbanization has affected these positive trends. Based on the LST data recorded at an urban station in Shijiazhuang in North China, and two rural meteorological stations, the effect of urbanization at the Shijiazhuang station for the period 1965–2012 is examined. We find, (1) a statistically-significant linear trend in annual mean urban–rural LST difference of \(0.27\,^{\circ }\hbox {C}\) \(\hbox {(10 year)}^{-1}\), with an urbanization contribution of 100% indicating that the increase in the annual mean LST at the urban station is entirely caused by urbanization. The urbanization effects in spring, summer and autumn on the trends of mean LST are also significant; (2) the urbanization effect is small for time series of the annual mean minimum LST, and statistically marginal for the trend in annual mean maximum LST [\(0.19\,^{\circ }\hbox {C}\,\hbox {(10 year)}^{-1}\)]; (3) the urbanization effect on the annual mean diurnal LST range (\(\Delta {LST}\)) at the urban station is a strongly significant trend of \(0.23\,^{\circ }\hbox {C (10\,year)}^{-1}\), with an urbanization contribution of 21%. The urbanization effects on trends in the spring and autumn mean \(\Delta {LST}\) are also larger and more significant than for the other seasons; (4) the urbanization effects on the long-term LST trends are remarkably different from those on the near-surface air temperature at the same urban station. Nonetheless, the significant warming of the urban boundary layer is expected to affect the urban environment and ecosystems. However, the problem of data representativeness at an urban station for the monitoring and investigation of large-scale climate change remains.  相似文献   

8.
Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide \((\hbox {CO}_{2})\) fluxes, but less attention has been paid to evaluating these corrections for methane \((\hbox {CH}_{4})\) fluxes. We measured \(\hbox {CH}_{4}\) fluxes with open-path sensors over a suite of sites with contrasting \(\hbox {CH}_{4}\) emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3–10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency \(\hbox {CH}_{4}\) fluctuations led to large differences in observed \(\hbox {CH}_{4}\) flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting \(\hbox {CH}_{4}\) cospectra for comparable ecosystems. These results give us confidence in \(\hbox {CH}_{4}\) fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.  相似文献   

9.
A model of \(\hbox {CO}_{2}\) atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as \(\hbox {CO}_{2}\) concentrations at the Norunda research station located inside a mixed pine–spruce forest. We present the results of simulations of wind-speed profiles and \(\hbox {CO}_{2}\) concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323–351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated \(\hbox {CO}_{2}\) concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of \(^{14}\hbox {CO}_{2}\) is presented and discussed.  相似文献   

10.
We used numerical simulations to investigate the general relationship between urban morphology and the intensity of wind gusts in built-up areas at the pedestrian level. The simulated urban boundary layer developed over a 19.2 km (length) \(\times \) 4.8 km (width) \(\times \) 1.0 km (height) simulation domain, with 2-m resolution in all directions, to explicitly resolve the detailed shapes of buildings and the flow at the pedestrian level. This complex computation was accomplished using the lattice Boltzmann method and by implementing a large-eddy simulation model. To generalize the results, a new parameter that expresses the intensity of gusts (the gust index, \({\tilde{U}}_{ max})\) was defined as the local maximum wind speed divided by the freestream velocity. In addition, this parameter was decomposed into the mean wind-speed ratio, \({\tilde{U}} \) and turbulent gust ratio, \({\tilde{U}}^{{\prime }}\) to evaluate the qualities of gusts. These parameters were useful for quantitatively comparing the gust intensities within urban canopies at different locations or even among different experiments. In addition, the entire horizontal domain was subdivided into homogeneous square patches, in which both the simulated gust parameters and the morphological characteristics of building geometries were averaged. This procedure masked the detailed structure of individual buildings but retained the bulk characteristics of the urban morphology. At the pedestrian level, the gust index decreased with increasing building cover. Compared to \({\tilde{U}} \), the quantity \({\tilde{U}}^{{\prime }}\) notably contributed to the index throughout the range of plan area index \((\lambda _p)\) values. The dependences of all normalized wind-speed ratios transiently changed at \(\lambda _p =~0.28\). In cases where \(\lambda _p < 0.28, {\tilde{U}} \) decreased with increasing \(\lambda _p \), although \({\tilde{U}}^{{\prime }}\) was almost constant. In cases where \(\lambda _p > 0.28, {\tilde{U}}\) was almost constant and \({\tilde{U}}^{{\prime }}\) decreased with increasing \(\lambda _p \). This was explained by the change in flow regimes within the building canyon. At a higher elevation above the canopy layer, \(\lambda _p \) becomes less relevant to normalized wind-speed ratios, and instead the aerodynamic roughness length became important.  相似文献   

11.
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (\(\alpha \) and \(\beta )\) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., \(\alpha = 3\) and \(\beta = 1/26~\hbox {(ms)}^{-1}\) for the infrared, and \(\alpha = 3\) and \(\beta = 1/19~\hbox {(ms)}^{-1}\) for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter \(\alpha \) and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of \(\alpha \). The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.  相似文献   

12.
Evaporation from wet-canopy (\(E_\mathrm{C}\)) and stem (\(E_\mathrm{S}\)) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, \(E_\mathrm{C}\) and \(E_\mathrm{S}\) dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in \(E_\mathrm{C}\) and assume (with few indirect data) that \(E_\mathrm{S}\) is generally \({<}2\%\) of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate \(E_\mathrm{C}\) and \(E_\mathrm{S}\) under the assumption that crown surfaces behave as “wet bulbs”. From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 \(\hbox {mm h}^{-1}\). Mean \(E_\mathrm{S}\) (0.10 \(\hbox {mm h}^{-1}\)) was significantly lower (\(p < 0.01\)) than mean \(E_\mathrm{C}\) (0.16 \(\hbox {mm h}^{-1}\)). But, \(E_\mathrm{S}\) values often equalled \(E_\mathrm{C}\) and, when scaled to trunk area using terrestrial lidar, accounted for 8–13% (inter-quartile range) of total wet-crown evaporation (\(E_\mathrm{S}+E_\mathrm{C}\) scaled to surface area). \(E_\mathrm{S}\) contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2–17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.  相似文献   

13.
The influence of random errors in turbulence measurements on scalar similarity for temperature, water vapour, \(\hbox {CO}_{2}\), and \(\hbox {NH}_{3}\) is investigated using two eddy-covariance datasets collected over a lake and a cattle feedlot. Three measures of scalar similarity, namely, the similarity constant in the flux–variance relationship, the correlation coefficient between two scalars and the relative transport efficiency, are examined. The uncertainty in the similarity constant \(C_{s}\) in the flux–variance relationship resulting from random errors in turbulence measurements is quantified based on error propagation analyses and a Monte-Carlo sampling method, which yields a distribution instead of a single value for \(C_{s}\). For different scalars, the distributions of \(C_{s}\) are found to significantly overlap, implying that scalars are transported similarly under strongly unstable conditions. The random errors in the correlation coefficients between scalars and the relative transport efficiencies are also quantified through error propagation analyses, and they increase as the atmosphere departs from neutral conditions. Furthermore, the correlation coefficients between three scalars (water vapour, \(\hbox {CO}_{2}\), and \(\hbox {NH}_{3}\)) are statistically different from unity while the relative transport efficiencies are not, which highlights the difference between these two measures of scalar similarity. The results suggest that uncertainties in these measures of scalar similarity need to be quantified when using them to diagnose the existence of dissimilarity among different scalars.  相似文献   

14.
We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin–Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin–Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of \(6\,\hbox {W m}^{-2}\) (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and \(5\,\hbox {W m}^{-2}\), with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin–Obukhov bulk formulation.  相似文献   

15.
The Nieuwstadt closed-form solution for the stationary Ekman layer is generalized for katabatic flows within the conceptual framework of the Prandtl model. The proposed solution is valid for spatially-varying eddy viscosity and diffusivity (O’Brien type) and constant Prandtl number (Pr). Variations in the velocity and buoyancy profiles are discussed as a function of the dimensionless model parameters \(z_0 \equiv \hat{z}_0 \hat{N}^2 Pr \sin {(\alpha )} |\hat{b}_\mathrm{s} |^{-1}\) and \(\lambda \equiv \hat{u}_{\mathrm{ref}}\hat{N} \sqrt{Pr} |\hat{b}_\mathrm{s} |^{-1}\), where \(\hat{z}_0\) is the hydrodynamic roughness length, \(\hat{N}\) is the Brunt-Väisälä frequency, \(\alpha \) is the surface sloping angle, \(\hat{b}_\mathrm{s}\) is the imposed surface buoyancy, and \(\hat{u}_{\mathrm{ref}}\) is a reference velocity scale used to define eddy diffusivities. Velocity and buoyancy profiles show significant variations in both phase and amplitude of extrema with respect to the classic constant \(\textit{K}\) model and with respect to a recent approximate analytic solution based on the Wentzel-Kramers-Brillouin theory. Near-wall regions are characterized by relatively stronger surface momentum and buoyancy gradients, whose magnitude is proportional to \(z_0\) and to \(\lambda \). In addition, slope-parallel momentum and buoyancy fluxes are reduced, the low-level jet is further displaced toward the wall, and its peak velocity depends on both \(z_0\) and \(\lambda \).  相似文献   

16.
Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian \((T^{\mathrm{E}})\) and Lagrangian \((T^{\mathrm{L}})\) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width (W) to the height (H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, \(T_\mathrm{u}^\mathrm{L} \) and \(T_\mathrm{w}^\mathrm{L} \), follow Raupach’s linear law within the constant-flux layer. The same holds true for \(T_\mathrm{w}^\mathrm{L} \) in both the canopies analyzed \((AR= 1\) and \(AR= 2\)) and also for \(T_\mathrm{u}^\mathrm{L} \) when \(AR = 1\). In contrast, for \(AR = 2\), \(T_\mathrm{u}^\mathrm{L} \) follows Raupach’s law only above \(z=2H\). Below that level, \(T_\mathrm{u}^\mathrm{L} \) is nearly constant with height, showing at \(z=H\) a value approximately one order of magnitude greater than that found for \(AR = 1\). It is shown that the assumption usually adopted for flat terrain, that \(\beta =T^{\mathrm{L}}/T^{\mathrm{E}}\) is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, \(\gamma /i_\mathrm{u} \) fits well \(\beta _\mathrm{u} =T_\mathrm{u}^\mathrm{L} /T_\mathrm{u}^\mathrm{E} \) in both the configurations by choosing \(\gamma \) to be 0.35 (here, \(i_\mathrm{u} =\sigma _\mathrm{u} / \bar{u} \), where \(\bar{u} \) and \(\sigma _\mathrm{u} \) are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, \(\beta _\mathrm{w} =T_\mathrm{w}^\mathrm{L} /T_\mathrm{w}^\mathrm{E} \) follows approximately \(\gamma /i_\mathrm{w} =0.65/\left( {\sigma _\mathrm{w} /\bar{u} } \right) \) for \(z > 2H\), irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum \((K_\mathrm{{T}})\) and the Kolmogorov constant \((C_0)\). It is found that \(C_0\) depends appreciably on the velocity component both for the flat terrain and canopy flow, even though for the latter case it is insensitive to AR values. In all the three experimental configurations analyzed here, \(K_\mathrm{{T}}\) shows an overall linear growth with height in agreement with the linear trend predicted by Prandtl’s theory.  相似文献   

17.
Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance \((\sigma _w^2 >0.1\,\hbox {m}^{2}\hbox {s}^{-2})\) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which \(\sigma _w^2\) decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from \(\approx \)270 to \(\approx \)1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.  相似文献   

18.
Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of \(2.3 \pm 0.3 \,^{\circ }\hbox {C}\), coinciding with a \(180^{\circ }\) shift in wind direction and a decrease in air temperature of \(2.1 \pm 0.2 \,^{\circ }\hbox {C}\). Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar’s ability to detect the lake breeze. The LBF’s ground speed and inland penetration distance were found to be well-correlated (\(r = 0.78\)), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion \(({>} 1\hbox { m s}^{-1})\) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times \({>} 2.5\hbox { m s}^{-1}\)) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.  相似文献   

19.
We quantify the spatial and temporal aspects of the urban heat-island (UHI) effect for Kanpur, a major city in the humid sub-tropical monsoon climate of the Gangetic basin. Fixed station measurements are used to investigate the diurnality and inter-seasonality in the urban–rural differences in surface temperature (\({\Delta } T_\mathrm{s}\)) and air temperature (\({\Delta } T_\mathrm{c}\)) separately. The extent of the spatial variations of the nighttime \({\Delta } T_\mathrm{c}\) and \({\Delta } T_\mathrm{s}\) is investigated through mobile campaigns and satellite remote sensing respectively. Nighttime \({\Delta } T_\mathrm{c}\) values dominate during both the pre-monsoon (maximum of 3.6 \(^\circ \hbox {C}\)) and the monsoon (maximum of 2.0 \(^\circ \hbox {C}\)). However, the diurnality in \({\Delta } T_\mathrm{s}\) is different, with higher daytime values during the pre-monsoon, but very little diurnality during the monsoon. The nighttime \({\Delta } T_\mathrm{s}\) value is mainly associated with differences in the urban–rural incoming longwave radiative flux (\(r^{2}=0.33\) during the pre-monsoon; 0.65 during the monsoon), which, in turn, causes a difference in the outgoing longwave radiative flux. This difference may modulate the nighttime \({\Delta } T_\mathrm{c}\) value as suggested by significant correlations (\(r^{2}=0.68\) for the pre-monsoon; 0.50 for the monsoon). The magnitude of \({\Delta } T_\mathrm{c}\) may also be modulated by advection, as it is inversely related with the urban wind speed. A combination of in situ, remotely sensed, and model simulation data were used to show that the inter-seasonality in \({\Delta } T_\mathrm{s}\), and, to a lesser extent, in \({\Delta } T_\mathrm{c}\), may be related to the change in the land use of the rural site between the pre-monsoon and the monsoon periods. Results suggest that the degree of coupling of \({\Delta } T_\mathrm{s}\) and \({\Delta } T_\mathrm{c}\) may be a strong function of land use and land cover.  相似文献   

20.
We investigate the effects of an isolated meso-\(\gamma \)-scale surface heterogeneity for roughness and albedo on the atmospheric boundary-layer (ABL) height, with a case study at a semi-arid forest surrounded by sparse shrubland (forest area: \(28~\text{ km }^2\), forest length in the main wind direction: 7 km). Doppler lidar and ceilometer measurements at this semi-arid forest show an increase in the ABL height over the forest compared with the shrubland on four out of eight days. The differences in the ABL height between shrubland and forest are explained for all days with a model that assumes a linear growth of the internal boundary layer of the forest through the convective ABL upwind of the forest followed by a square-root growth into the stable free atmosphere. For the environmental conditions that existed during our measurements, the increase in ABL height due to large sensible heat fluxes from the forest (\(600~\text {W~m}^{-2}\) in summer) is subdued by stable stratification in the free atmosphere above the ABL, or reduced by high wind speeds in the mixed layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号