首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel. The wind farm consisted of a series of 10 rows by 2–3 columns of miniature wind turbines spaced 5 and 4 rotor diameters in the streamwise and spanwise directions respectively. It was placed in a boundary-layer flow developed over a smooth surface under thermally neutral conditions. Cross-wire anemometry was used to obtain high resolution measurements of streamwise and vertical velocity components at various locations within and above the wind farm. The results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions. This leads to improved power output of the overall wind farm. A simplified analysis suggests that the difference in power output between the two configurations is on the order of 10%. The maximum levels of turbulence intensity in the staggered wind farm were found to be very similar to that observed in the wake of a single wind turbine, differing substantially with that observed in an aligned configuration with similar spacing. The dramatic changes in momentum and turbulence characteristics in the two configurations show the importance of turbine layout in engineering design. Lateral homogenization of the turbulence statistics above the wind farm allows for the development of simple parametrizations for the adjustment of flow properties, similar to the case of a surface roughness transition. The development of an internal boundary layer was observed at the upper edge of the wind farm within which the flow statistics are affected by the superposition of the ambient flow and the flow disturbance induced by the wind turbines. The adjustment of the flow in this layer is much slower in the staggered situation (with respect to its aligned counterpart), implying a change in the momentum/power available at turbine locations. Additionally, power spectra of the streamwise and vertical velocity components indicate that the signature of each turbine-tip vortex structure persists to locations deep within the wind farm.  相似文献   

2.
大规模风电场建成后对风能资源影响的研究   总被引:2,自引:0,他引:2  
刘磊  高晓清  陈伯龙  汪宁渤 《高原气象》2012,31(4):1139-1144
考虑了千万千瓦级风电基地建成后风电机群对近地面层风速的影响,采用Frandsen研究了大规模风电场内部风速损失时所使用的方法,在内边界层已经充分发展成新边界层的区域内,对轮毂高度65m处风速Uh进行了计算。结果表明,风电场建成后研究区内,风速Uh与未建场时的65m风速U0相比变小,存在风速损失,该风速损失随着U0的增大而减小,与风电机的推力系数CT性质有关;大规模风电场建成后,Uh在3~20m.s-1范围内的平均风功率密度与未建场时U0在此范围内的平均风功率密度相比损失约为58.45%,这与建场地区建场前65m处风速值大小以及各风速值出现的概率有关。  相似文献   

3.
The potential for porous windbreaks to enhance wind-turbine power production is studied using linearized theory and wind-tunnel experiments. Results suggest that windbreaks have the potential to substantially increase power production, while lowering mean shear, and leading to negligible changes in turbulence intensity. The fractional increase in turbine power output is found to vary roughly linearly with windbreak height, where a windbreak 10% the height of the turbine hub increases power by around 10%. Wind-tunnel experiments with a windbreak imposed beneath a turbulent boundary layer show the linearized predictions to be in good agreement with particle-image-velocimetry data. Power measurements from a model turbine further corroborate predictions in power increase. Moreover, the wake of the windbreak showed a significant interaction with the turbine wake, which may inform windbreak use in large wind farms. Power measurements from a second turbine downwind of the first with its own windbreak show that the net effect for multiple turbines is dependent on windbreak height.  相似文献   

4.
风电场流场特性及风机布局数值模拟研究   总被引:1,自引:0,他引:1  
针对风电场流场特性研究对风力机工作性能提高的重要意义,采用计算流体力学(CFD)方法在单机风力机模拟验证的基础上,对某风电场单风力机和三种布局条件下的风电场流场特性进行了数值模拟研究.考察了不同布局条件下风电场速度、叶轮表面压力以及湍流涡的分布特性.结果表明:叶轮后方尾流效应明显,速度损失随着相对距离的增加而逐渐减小,...  相似文献   

5.
为了提高风电场风速预报和功率预测的精度和准确率,并考虑风机测风数据的不稳定因素,以多年服务的内蒙古中部某风力发电场A为研究区,在勘察风电场地形及风机布局后,按照季节、风向进行风机间风速时空相关性分析,划分出风机轮毂高度风速高相关为典型特征的风机网格分类片区,采用卡尔曼滤波方法,通过直接和间接两种订正方案,分别进行风机片区风速订正。结果表明:风速高相关风机片区的划分,对于提高风电场风速预报及功率预测精度和准确率具有一定作用,利用风电场区测风塔梯度观测风速,对风机片区进行间接订正,可有效改善数值模式预报风速,15个片区类型下相关系数由0.18~0.72提高至0.67~0.91,误差绝对值由1.6~2.9 m·s-1降低至1.0~1.5 m·s-1。  相似文献   

6.
Summary A statistical-dynamical downscaling procedure is applied to investigate the climatological wind field over a complex terrain area in central Germany. The model domain, 80×87 km, is dominated by flat terrain in the westerly and northerly part and encompasses the Teuteburger Wald and the Wiehengebirge areas with hills up to 330 m a.m.s.l. in the southeasterly region. The downscaling procedure combines a large-scale regionally representative wind statistic and a high-resolution numerical atmospheric mesoscale model. A cluster analysis of a 12-years time series of radiosonde data provides 143 clusters each being a combination of the geostrophic wind components and the vertical temperature gradient. These parameter sets constitute the reference state for highly-resolved steady-state wind field simulations with a non-hydrostatic model. Weighting the resulting wind fields with the corresponding cluster frequency gives climatologically representative frequency distributions of the wind speed and -direction. By combining the wind speed frequency distribution with the power curve of wind turbines the yearly energy output of 46 wind turbines inside the simulation domain was calculated and compared to the actual production. No bias or systematic trend in the deviation was found. The relative differences for the smallest turbines reach 100 percent with a decreasing tendency to larger units. Received November 13, 1998  相似文献   

7.
以张家口某处风电场为实验场地,采用两台多普勒激光雷达(Wind3D 6000和WindMast WP350)分别测量风力机的尾流和来流风速,对全尾流、半尾流和独立尾流3种工况进行研究。结果表明,3种工况下随着尾流发展尾流宽度均不断变大,而尾流深度和速度衰减则不断减小;全尾流和半尾流工况中,上游风力机的存在会增加下游风力机尾流宽度,且全尾流比半尾流的增加量大;全尾流和半尾流工况中,相较于上游风力机,下游风力机尾流深度和速度衰减均较小。  相似文献   

8.
As wind-turbine arrays continue to be installed and the array size continues to grow, there is an increasing need to represent very large wind-turbine arrays in numerical weather prediction models, for wind-farm optimization, and for environmental assessment. We propose a simple analytical model for boundary-layer flow in fully-developed wind-turbine arrays, based on the concept of sparsely-obstructed shear flows. In describing the vertical distribution of the mean wind speed and shear stress within wind farms, our model estimates the mean kinetic energy harvested from the atmospheric boundary layer, and determines the partitioning between the wind power captured by the wind turbines and that absorbed by the underlying land or water. A length scale based on the turbine geometry, spacing, and performance characteristics, is able to estimate the asymptotic limit for the fully-developed flow through wind-turbine arrays, and thereby determine if the wind-farm flow is fully developed for very large turbine arrays. Our model is validated using data collected in controlled wind-tunnel experiments, and its usefulness for the prediction of wind-farm performance and optimization of turbine-array spacing are described. Our model may also be useful for assessing the extent to which the extraction of wind power affects the land–atmosphere coupling or air–water exchange of momentum, with implications for the transport of heat, moisture, trace gases such as carbon dioxide, methane, and nitrous oxide, and ecologically important oxygen.  相似文献   

9.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening.  相似文献   

10.
为降低风电场短期预报风速误差,减少风电场短期风功率偏差积分电量,提高风电场发电功率预测准确率,分季节研究了相似误差订正方法对ECMWF单台风机预报风速的订正效果.结果表明:相似误差订正后不同风机预报风速的误差差距减小;预报风速的平均绝对偏差和均方根误差明显降低,其中夏季和秋季华能义岗风电场两个指标降低幅度均超过0.1 ...  相似文献   

11.
A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the ‘standard’ actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous in the spanwise direction, thus resembling more an internal boundary layer. Inside the staggered farm, the relatively longer separation between consecutive downwind turbines allows the wakes to recover more, exposing the turbines to higher local wind speeds (leading to higher turbine efficiency) and lower turbulence intensity levels (leading to lower fatigue loads), compared with the aligned farm. Above the wind farms, the area-averaged velocity profile is found to be logarithmic, with an effective wind-farm aerodynamic roughness that is larger for the staggered case.  相似文献   

12.
设计了一种基于单片机的小型风力发电机扇叶朝向控制系统,该系统由风向传感器模块、液晶显示模块、驱动模块和扇叶朝向控制装置组成.系统以MSP430F149单片机作为控制核心,利用风向传感器测量风向信息传输给单片机,单片机根据风向信息控制步进电机调节扇叶朝向来风方向,并且风向信息由LCD显示.该系统可以提高风力发电机的工作效率,具有一定的实用意义.  相似文献   

13.
The wind power generated during winter months 1999–2003 at several wind farms in the northeastern Iberian Peninsula is investigated through the application of a statistical downscaling. This allows for an improved understanding of the wind power variability and its relationship to the large scale atmospheric circulation. It is found that 97 % of the variability of this non-climatic variable is connected to changes in the atmospheric circulation. The methodological uncertainty associated with multiple configurations of the statistical downscaling method replicates well the observed variability of the wind power, an indication of the robustness of the methodology to changes in the model set up. In addition, the use of the statistical model is extended out of the observational period providing an estimation of the long-term variability of wind power throughout the twentieth century. The extended wind power reconstruction shows large inter-annual and multidecadal variability. Alternative approaches to calibrate the empirical downscaling model using actual wind power observations have also been investigated. They involve the estimation of wind power changes from downscaled wind values and make use of several transfer functions based on the linearity between wind and wind energy. The performance of the latter approaches is similar to the direct downscaling of wind power and may allow wind power production estimations even in the absence of historical wind turbine records. These results can be of great interest for deriving medium/long term impact-oriented energy assessments, especially when wind power observations are missing as well as in the context of climate change scenarios.  相似文献   

14.
This article presents a review of the status and basis of wind-generated electricity production, the state of knowledge regarding possible changes in the spatio-temporal characteristics of the wind resource and wind turbine operating conditions, the principal extreme events that are of relevance to the wind energy industry, and the major potential vulnerabilities of the wind energy industry to climate change, with a specific focus on extreme events. Generally, the magnitude of projected changes over Europe and the contiguous USA are within the ‘conservative’ estimates embedded within the Wind Turbine Design Standards. However, more research is needed to quantify (i) how global climate evolution may influence the operation of wind turbines outside these regions, (ii) events causing coincident extreme wind speeds, gusts, and vertical wind shear, and (iii) combined wind-wave loading on offshore turbines.  相似文献   

15.
We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters ( $D$ D ) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately $2D$ 2 D directly south of a wind turbine; the other lidar was moved approximately $3D$ 3 D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43–117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.  相似文献   

16.
四川省会理县风能资源分析研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究利用四川省会理县测风塔短期2012年2月1日~2013年1月31日期间的70m高度实测逐时数据,经会理和会东气象观测站1981年1月~2010年12月共计30年的风速逐时数据采用长年代法订正推算后,对会理县该研究区域风能资源参数进行计算。结果表明:该区域风能资源应用于并网风力发电分别为“很好”和“好”的等级,具有较好开发潜力;风能和风向较为集中,有利于风机布设;测风塔地处高海拔地形较为平坦的山脊地带,不占用耕地,临近公路,气候较为温和,利于风电场修建。   相似文献   

17.
Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s\(^{-1}\)). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (<200 m above sea level). To provide these data, we use large-eddy simulations to produce wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.  相似文献   

18.
风力发电机叶片姿态与雷击概率关系模拟分析   总被引:3,自引:3,他引:0       下载免费PDF全文
利用闪电先导二维随机模式对风力发电机遭受雷击情况进行模拟,分析表明:随着下行先导初始位置相对风力发电机水平偏移距离不断增加,雷击风力发电机概率不断减小,偏右500 m时减至4%,且雷击部位多为叶片,叶片姿态不同,雷击特点存在一定差异。当风力发电机1号扇叶转动45°时,扇叶上产生的上行先导长度达221 m,高于平均值10.3%,且各个扇叶间的竞争关系较明显。对风力发电机叶片姿态不同、偏移下行先导不同距离时的雷击概率进行模拟,得出下行梯级先导相对于风力发电机水平偏右300 m以及偏左300 m以内时,扇叶处于15°~45°之间遭受的雷击概率略高,而偏右500 m时其雷击概率明显偏高。由整体随机性分析可知,当风力发电机处于15°~45°时,遭受雷击危害的概率相对较大。  相似文献   

19.
Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4–5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1–2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Kármán formulation agrees well with the measured velocity spectra.  相似文献   

20.
The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号