首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two distinct hypoxic patterns were revealed from high-frequency dissolved oxygen (DO) data collected from North Branch of Onancock Creek, a shallow coastal estuary of the Chesapeake Bay, from July to October 2004. Diurnal hypoxia developed associated with large DO swings during fair weather and hypoxia/anoxia developed for prolonged 2–5-day periods following rainfall events. A simplified diagnostic DO-algae model was used to investigate DO dynamics in the creek. The model results show that the modeling approach enables important features of the DO dynamics in the creek to be captured and analyzed. Large anthropogenic inputs of nutrients to the creek stimulated macroalgae blooms in the embayment. High DO production resulted in supersaturated DO in daytime, whereas DO was depleted at night as the high respiration overwhelmed the DO supply, leading to hypoxia. Unlike deep-water environments, in this shallow-water system, biological processes dominate DO variations. High macroalgae biomass interacting with low light and high temperature trigger the development of prolonged hypoxic/anoxic postrainfall events.  相似文献   

2.
The effects of low dissolved oxygen or hypoxia (<2 mg l?1) on macrobenthic infaunal community structure and composition in the lower Chesapeake Bay and its major tributaries, the Rappahannock, York, and James rivers are reported. Macrobenthic communities at hypoxia-affected stations were characterized by lower species diversity, lower biomass, a lower proportion of deep-dwelling biomass (deeper than 5 cm in the sediment), and changes in community composition. Higher dominance in density and biomass of opportunistic species (e.g., euryhaline annelids) and lower dominance of equilibrium species (e.g., long-lived bivalves and maldanid polychaetes) were observed at hypoxia-affected stations. Hypoxia-affected macrobenthic communities were found in the polyhaline deep western channel of the bay mainstem north of the Rappahannock River and in the mesohaline region of the lower Rappahannock River. No hypoxic effects on the infaunal macrobenthos were found in the York River, James River, or other deep-water channels of the lower Chesapeake Bay.  相似文献   

3.
Enrichment of molybdenum (Mo) in reducing sediments due to authigenic fixation in anoxic interstitial waters could provide an indicator of hypoxic conditions that integrates over substantial temporal extents. Sediments maintained under controlled dissolved oxygen (DO) conditions showed elevated concentrations of Mo when exposed to low DO concentrations. Mo accumulation was linearly related to time of exposure in treatments below 2.8 mg O2/L, with less or no accumulation at higher concentrations. Rates of accumulation were independent of DO concentration below 2.8 mg/L. Accumulation occurred at DO concentrations higher than those limiting accumulation in field settings, with rates in the lowest treatments similar to those in sediments of deep basins with restricted circulation and low DO concentrations.  相似文献   

4.
Stratification and bottom-water hypoxia in the Pamlico River estuary   总被引:1,自引:0,他引:1  
Relationships among bottom-water dissolved oxygen (DO), vertical stratification, and the factors responsible for stratification-destratification in this shallow, low tidal-energy estuary were studied using a 15-yr set of biweekly measurements, along with some recent continuous-monitoring data. Hypoxia develops only when there is both vertical water-column stratification and warm water temperature (>15°C). In July, 75% of the DO readings were <5 mg 1?1, and one-third were <1 mg 1?1. Severe hypoxia occurs more frequently in the upper half of the estuary than near the mouth. Both the time series data and correlation analysis results indicate that stratification events and DO levels are tightly coupled with variations in freshwater discharge and wind stress. Stratification can form or disappear in a matter of hours, and episodes lasting from one to several days seem to be common. Estimated summertime respiration rates in the water and sediments are sufficient to produce hypoxia if the water is mixed only every 6–12 d. There has been no trend toward lower bottom water DO in the Pamlico River Estuary over the past 15 yr. *** DIRECT SUPPORT *** A01BY059 00002  相似文献   

5.
Seasonal hypoxia [dissolved oxygen (DO)?≤?2 mg?l?1] occurs over large regions of the northwestern Gulf of Mexico continental shelf during the summer months (June–August) as a result of nutrient enrichment from the Mississippi–Atchafalaya River system. We characterized the community structure of mobile fishes and invertebrates (i.e., nekton) in and around the hypoxic zone using 3 years of bottom trawl and hydrographic data. Species richness and total abundance were lowest in anoxic waters (DO?≤?1 mg?l?1) and increased at intermediate DO levels (2–4 mg?l?1). Species were primarily structured as a benthic assemblage dominated by Atlantic croaker (Micropogonias undulatus) and sand and silver seatrout (Cynoscion spp.), and a pelagic assemblage dominated by Atlantic bumper (Chloroscombrus chrysurus). Of the environmental variables examined, bottom DO and distance to the edge of the hypoxic zone were most strongly correlated with assemblage structure, while temperature and depth were important in some years. Hypoxia altered the spatial distribution of both assemblages, but these effects were more severe for the benthic assemblage than for the pelagic assemblage. Brown shrimp, the primary target of the commercial shrimp trawl fishery during the summer, occurred in both assemblages, but was more abundant within the benthic assemblage. Given the similarity of the demersal nekton community described here to that taken as bycatch in the shrimp fishery, our results suggest that hypoxia-induced changes in spatial dynamics have the potential to influence harvest and bycatch interactions in and around the Gulf hypoxic zone.  相似文献   

6.
In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present-day bottom water redox conditions range from fully oxygenated and seasonally hypoxic to almost permanently anoxic and sulfidic. Strong surface enrichments of Fe-oxide bound P are observed at oxic and seasonally hypoxic sites but not in the anoxic basins. Reductive dissolution of Fe-oxides and release of the associated P supports higher sediment-water exchange of PO4 at hypoxic sites (up to ∼800 μmol P m−2 d−1) than in the anoxic basins. This confirms that Fe-bound P in surface sediments in the Baltic acts as a major internal source of P during seasonal hypoxia, as suggested previously from water column studies. Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca-P formation or biogenic Ca-P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased primary productivity. Historical records of bottom water oxygen at two sites (Bornholm, Northern Gotland) show a decline over the past century and are accompanied by a rise in values for typical sediment proxies for anoxia (total sulfur, molybdenum and organic C/P ratios). While sediment reactive P concentrations in anoxic basins are equal to or higher than at oxic sites, burial rates of P at hypoxic and anoxic sites are up to 20 times lower because of lower sedimentation rates. Nevertheless, burial of reactive P in both hypoxic and anoxic areas is significant because of their large surface area and should be accounted for in budgets and models for the Baltic Sea.  相似文献   

7.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

8.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

9.
Heavy metals and metalloids in sediments from the Llobregat basin,Spain   总被引:1,自引:0,他引:1  
The concentration of heavy metals and metalloids (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb and Zn) in sediments from the River Llobregat and its tributaries (Anoia and Cardener) was studied. Samples collected at 17 locations during four different periods were analysed by ICP-MS. The heavy metal enrichment at some sites along the rivers reflects the effects of agricultural activities, sewage treatment plant effluents, collectors' discharges and industrial activities. Principal component analysis (PCA) was used to describe trends in contamination and to find groupings among the investigated areas. The Llobregat and Cardener sediments appeared to have features of an unpolluted river, even though significant amounts of domestic and industrial wastewater are discharged into these rivers. On the other hand, the sediments from the River Anoia showed high Cr and Hg levels originating from industrial activities. The concentrations of Cr and Hg ranged from 91–540 and 0.28–2.29 µg/g respectively.  相似文献   

10.
Monthly measurements made at 15 stations along the axis of the upper Neuse River estuary show a highly variable degree of correlation between concentration of suspended particulate material (SPM) and attenuation of light (c) as measured by transmissometer. Coefficients of determination along transect lines ranged from 0.12 to 0.93 and calibration slopes ranged from 0.50 to 5.63. When examined on a station-by-station basis, coefficients of determination ranged from 0.21 to 0.96 and calibration slopes ranged from 1.04 to 4.94. Surface calibrations made at individual stations over the full 13-month period were the most consistent of all observations and were considerably better than calibrations made using all of the stations on a given day. Organic content, which can dominate the suspended sediment load during some months, does not appear to explain the variations in reliability of the calibrations. However, an abundance of large aggregates with time-varying size and shape distributions may be partly responsible for variations in optical properties of the sediments, and thus may confound the relationship between SPM and c in the Neuse River estuary. Time-varying calibrations to account for non-negligible changes in optical properties may not suffice in complex estuarine environments where the in situ particle dynamics are poorly understood.  相似文献   

11.
A Poisson catch rate model for striped bass (Morone saxatilis) anglers in Chesapeake Bay was developed that incorporates the effect of bottom temperature and dissolved oxygen (DO). Angler catch rates are shown to be negatively affected by low DO. Predicted angler catch rates were then used in a random utility model of striped bass fishing location choice. Where anglers choose to fish is significantly related to expected catch rate and the travel cost and time from the anglers residence to the fishing location. Results from the random utility model were then used to simulate the economic welfare changes that result from changing DO levels in the Patuxent River. Since there are many substitute sites for fishing in the Patuxent River, the welfare effects are small. Increases in DO from current levels have a small effect on angler welfare, but if levels are allowed to deteriorate so they never exceed 5 mg l−1, the welfare effects are much larger. Under this latter scenario, the net present value of angler losses exceeds 100,000, and are almost100,000, and are almost 300,000 if the fishing grounds are anoxic. Losses are considerably higher as the area impacted by low oxygen conditions increases.  相似文献   

12.
Pramod Singh 《Chemical Geology》2010,269(3-4):220-236
Major, trace and REE compositions of sediments from the upper Ganga River and its tributaries in the Himalaya have been examined to study the weathering in the Himalayan catchment region and to determine the dominant source rocks to the sediments in the Plains. The Ganga River rises in the Higher Himalaya from the Higher Himalayan Crystalline Series (HHCS) bedrocks and traverses over the Lesser Himalayan Series (LHS) and the Himalayan foreland basin (Siwaliks) rocks before entering into the Gangetic Plains. The major element compositions of sediments, reflected in their low CIA values (45.0–54.7), indicate that silicate weathering has not been an important process in the Himalayan catchment region of the Ganga River. Along the entire traverse, from the HHCS through LHS and the Siwaliks, the sediments from the tributaries and the mainstream Ganga River show higher Na2O, K2O, CaO and silica. This, and the higher ratios of La/Sc, Th/Sc and lower ratios of Co/Th, suggest that the source rocks are felsic. The fractionated REE patterns and the significant negative Eu anomalies (Eu/Eu? = 0.27–0.53) indicate highly differentiated source. Moreover, the comparison of the sediments with different source rock lithologies from the HHCS and the LHS for their major elements clearly suggests that the HHCS rocks were the dominant source. Further, comparison of their UCC (upper continental crust) normalized REE patterns suggests that, among the various HHCS rocks, the metasediments (para-gneiss and schist) and Cambro-Ordovician granites have formed the major source rocks. The Bhagirathi and Alaknanda River sediments are dominantly derived from metasediments and those in the Mandakini River from Cambro-Ordovician granites. The resulting composition of the sediments of the Ganga River is due to the mixing of sediments supplied by these tributaries after their confluence at Devprayag. No further change in major, trace and rare earth element compositions of the sediments of the Ganga River after Devprayag up to its exit point to the Plains at Haridwar, suggests little contribution of the Lesser Himalayan and Siwalik rocks to the Ganga River sediments.  相似文献   

13.
Increased nutrient loadings have resulted in low dissolved oxygen (DO) concentrations in bottom waters of the Patuxent River, a tributary of Chesapeake Bay. We synthesize existing and newly collected data to examine spatial and temporal variation in bottom DO, the prevalence of hypoxia-induced mortality of fishes, the tolerance of Patuxent River biota to low DO, and the influence of bottom DO on the vertical distributions and spatial overlap of larval fish and fish eggs with their gelatinous predators and zooplankton prey. We use this information, as well as output from watershed-quality and water-quality models, to configure a spatially-explicit individual-based model to predict how changing land use within the Patuxent watershed may affect survival of early life stages of summer breeding fishes through its effect on DO. Bottom waters in much of the mesohaline Patuxent River are below 50% DO saturation during summer. The system is characterized by high spatial and temporal variation in DO concentrations, and the current severity and extent of hypoxia are sufficient to alter distributions of organisms and trophic interactions in the river. Gelatinous zooplankton are among the most tolerant species of hypoxia, while several of the ecologically and economically important finfish are among the most sensitive. This variation in DO tolerances may make the Patuxent River, and similar estuaries, particularly susceptible to hypoxia-induced alterations in food web dynamics. Model simulations consistently predict high mortality of planktonic bay anchovy eggs (Anchoa mitchilli) under current DO, and increasing survival of fish eggs with increasing DO. Changes in land use that reduce nutrient loadings may either increase or decrease predation mortality of larval fish depending on the baseline DO conditions at any point in space and time. A precautionary approach towards fisheries and ecosystem management would recommend reducing nutrients to levels at which low oxygen effects on estuarine habitat are reduced and, where possible, eliminated.  相似文献   

14.
The interaction between heavy metals and river sediment is very important because river sediment is the sink for heavy metals introduced into a river and it can be a potential source of pollutants when environmental conditions change. The Kumho River, the main tributaries of the Nakdong River in Korea, can be one of the interesting research targets in this respect, because it runs through different geologic terrains with different land use characteristics in spite of its short length. Various approaches were used, including mineralogical, geochemical, and statistical analyses to investigate the distribution and behavior of heavy metals in the sediments and their sources. The effect of geological factor on the distribution of these metals was also studied. No noticeable changes in the species or relative amounts of minerals were observed by quantitative X-ray diffraction in the sediments at different stations along the river. Only illite showed a significant correlation with concentrations of heavy metals in the sediments. Based on an average heavy metal concentration (the average concentrations of Cd, Co, Cr, Cu, Ni, Pb, and Zn were 1.67, 20.9, 99.7, 125, 97.6, 149, 298 ppm, respectively), the sediments of the Kumho River were classified as heavily polluted according to EPA guidelines. The concentrations of heavy metals in the sediments were as follows: Zn > Pb > Cu > Ni > Cr > Co > Cd. In contrast, contamination levels based on the average I geo (index of geoaccumulation) values were as follows: Pb > Cd > Zn > Cu > Co = Cr > Ni. The concentrations of heavy metals increased downstream (with the exception of Cd and Pb) and were highest near the industrial area, indicating that industrial activity is the main factor in increasing the concentrations of most heavy metals at downstream stations. Sequential extraction results, which showed increased heavy metal fractions bound to Fe/Mn oxides at the downstream stations, confirmed anthropogenic pollution. The toxicity of heavy metals such as Ni, Cu, and Zn, represented by the exchangeable fraction and the fraction bound to carbonate, also increased at the downstream stations near the industrial complexes. Statistical analysis showed that Pb and Cd, the concentrations of which were relatively high at upstream stations, were not correlated with other heavy metals, indicating other possible sources such as mining activity.  相似文献   

15.
Fish communities in tidal tributaries have received considerable attention, but the relative value of nontidal tributaries (having a tidal amplitude of <?5 cm) may represent an under-valued habitat. A multi-gear sampling approach was used to collect fish and macroinvertebrates from one tidal and two nontidal tributaries to describe and compare the respective nekton communities and habitat use patterns. Nekton communities in tidal and nontidal tributaries were markedly different even though habitats were similar (e.g., temperature, DO, depths, shoreline vegetation). While catch-per-unit-effort (CPUE) of estuarine-dependent species (e.g., red drum, spot, common snook) was lower in nontidal tributaries, the overall nekton CPUE was twice that of the tidal tributary, and the community was comprised mostly of freshwater marsh species (e.g., eastern mosquitofish, sailfin molly, bluefin killifish). Based on the life histories of the fishes that differed between tributary types, the proximity of coastal inlets and availability of effective larval transport mechanisms for estuarine-dependent species may be greater determinants of community differences than factors related to tributary size or shoreline habitat type. These results recognize smaller nontidal tributaries as undervalued nursery habitats and suggest the function as secondary nursery habitats is a critical service to the overall estuarine community.  相似文献   

16.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

17.
Near-bottom hypoxia during summer months has been a documented recurring phenomenon for decades in western Long Island Sound (WLIS); this temperate estuary has also supported, until 1999, a substantial American lobster (Homarus americanus) fishery. In response to a dramatic mass die-off of lobsters that began in WLIS in the late summer of 1999, a benthic habitat survey using a sediment-profile imaging (SPI) camera was conducted in October 1999. Follow-up surveys involving SPI and simultaneous measurements of dissolved oxygen (DO), hydrogen sulfide and ammonia within 10 cm of the bottom were conducted in August, September and November 2000. The SPI images revealed black sediments at or just below the sediment-water interface at a high proportion of stations in both 1999 and 2000, suggesting strongly reducing conditions and elevated levels of sulfides and other reduced end-products in sediment pore-water. Visual redox depths were relatively shallow (less than 2 cm) and spatially variable, and benthic communities appeared to be dominated by small, surface-dwelling opportunists. In August 2000, near-bottom DO concentrations < 2 mg I−1 coincided with shallow redox depths at stations in the Western Narrows region. As DO levels increased from August to November 2000, visual redox depths remained shallow. Both sulfide and ammonia were detected in samples of bottom water taken within about 10 cm of the seafloor in all three 2000 surveys. The results suggest that anaerobic decomposition processes within the organic-rich sediments of WLIS strongly influence conditions at the sediment-water interface during late summer-early fall, the time of year that the lobster mortality event of 1999 began. Releases of reduced end-products (e.g., sulfide and ammonia) into overlying waters, combined with low DO levels and abnormally high water temperatures, represent multiple environmental stressors that may have physiologically weakened the lobsters and increased their susceptibility to deadly pathogens.  相似文献   

18.
Hypoxia/anoxia in bottom waters of the Rappahannock River, a tributary estuary of Chesapeake Bay, was observed to persist throughout the summer in the deep basin near the river mouth; periodic reoxygenation of bottom water occurred on the shallower sill at the river mouth. The reoxygenation events were closely related to spring tide mixing. The dissolved oxygen (DO) in surface waters was always near or at the saturation level, while that of bottom waters exhibited a characteristic spatial pattern. The bottom DO decreased upriver from river mouth, reaching a minimum upriver of the deepest point of the river and increasing as the water becaume shallower further upriver. A model was formulated to describe the longitudinal distribution of DO in bottom waters. The model is based on Lagrangian concept—following a water parcel as it travels upriver along the estuarine bottom. The model successfully describes the characteristic distribution of DO and also explains the shifting of the minimum DO location in response to spring-neap cycling. A diagnostic study with the model provided insight into relationships between the bottom DO and the competing factors that contribute to the DO budget of bottom waters. The study reveals that both oxygen demand, either benthic or water column demand, and vertical mixing have a promounced effect on the severity of hypoxia in bottom waters of an estary. However, it is the vertical mixing which controls the longitudinal location of the minimum DO. The strength of gravitational circulation is also shown to affect the occurrence of hypoxia. An estuary with stronger circulation tends to have less chance for hypoxia to occur. The initial DO deficit of bottom water entering an estuary has a strong effect on DO concentration near the river mouth, but its effect diminishes in the upriver direction.  相似文献   

19.
Hypoxic events in Narragansett Bay, Rhode Island, during the summer of 2001   总被引:1,自引:0,他引:1  
Bottom water hypoxic events were observed in Narragansett Bay, Rhode Island during the summer of 2001 using a towed sensor, vertical casts at fixed stations, and continuous monitoring buoys. This combination of approaches allowed for both extensive spatial and temporal sampling. Oxygen concentrations below the U.S. Environmental Protection Agency (EPA) acute hypoxia criterion of 2.3 mg l?1 were observed in the northern parts of Narragansett Bay, including the Providence River. We estimate 39% of the area of the Providence River was affected by acute hypoxia between July and September 2001. All other regions experienced only small areas of acute hypoxia (<5%), and no acute hypoxia was observed from Quonset Point south. The area encompassing oxygen concentrations below the EPA chronic hypoxia criterion of 4.8 mg l?1 was much more extensive in the upper half of Narragansett Bay, sometimes covering the majority of the region, though it is unclear whether exposure to concentrations below this criterion persisted long enough to significantly affect marine species in these areas. Vertical profiles of dissolved oxygen typically exhibited a mid water oxygen minimum near the pycnocline, followed by a slight increase in oxygen with depth. The surface waters above the pycnocline were typically supersaturated with oxygen. The northern portions of the Bay where the most extensive hypoxia was observed corresponded to the regions with both the greatest thermohaline stratification, the highest nutrient inputs, and the highest primary productivity.  相似文献   

20.
On August 13, 2004, Hurricane Charley came ashore in the Charlotte Harbor watershed. Surface winds at the time of landfall were estimated at 130 knots. The track of the hurricane roughly followed the floodplain of the Peace River, causing massive defoliation and mortality of native vegetation and planted citrus groves, as well as substantial damage to human habitation and various infrastructure elements. Eight days after landfall, a water quality monitoring effort documented hypoxic (<2 mg I−1) to nearly anaerobic (<0.5 mg I−1) dissolved oxygen (DO) values throughout the vast majority of the Peace River's c. 6,000 km2 watershed. Low DO values appeared to be related to high values of both dissolved organic matter and suspended materials. Hypoxic conditions in Charlotte Harbor itself, occurred within 2 wk of landfall. Approximately 3 wk after the landfall of Hurricane Charley, Hurricane Frances struck the east coast of Florida, causing further wind damage and bringing substantial amounts of rain to the Charlotte Harbor watershed. Three weeks later still, Hurricane Jeanne caused similar damage to the same area. In response to the combined effects of these three hurricanes, DO values in the Peace River did not recover to pre-hurricane levels until approximately 2–3 mo later. The spatial and temporal pattern of DO fluctuations appeared to be related to the proximity of sampling locations to the path of the eyewall of the first of the three hurricanes. Within the Harbor itself, the duration of hypoxic conditions was less than that recorded within the Peace River, perhaps reflecting greater dilution of oxygen-poor waters from the watershed with less-affected water from the Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号