首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

2.
We report observations which identify the optical/IR counterpart to the ROSAT X-ray transient RX J0117.6−7330. The counterpart is suggested to be a B1–B2 star (luminosity class III–V) showing an IR excess and strong Balmer emission lines. The distance derived from reddening and systemic velocity measurements is consistent with the distance derived from X-ray measurements and puts the source in the Small Magellanic Cloud (SMC).  相似文献   

3.
We have performed a ROSAT follow-up observation of the X-ray transient SAX J1810.8–2609 on 1998 March 24 and detected a bright X-ray source (named RX J1810.7–2609) which was not detected during the ROSAT all-sky survey in September 1990. Optical-to-infrared follow-up observations of the 10" radius ROSAT HRI X-ray error box revealed one variable object ( R =19.5±0.5 on March 13, R >21.5 on 1998 August 27) which we tentatively propose as the optical/IR counterpart of RX J1810.7–2609≡SAX J1810.8–2609.  相似文献   

4.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

5.
We present low–medium resolution optical spectroscopy of the eclipsing AM Her system MN Hya (RX J0929–24). We determine the magnetic field strength at the primary accretion region of the white dwarf to be 42 MG from the spacing of cyclotron features visible during π ∼ 0.4–0.7. From spectra taken during the eclipse we find that the secondary has an M3–4 spectral type. Combined with the eclipse photometry of Sekiguchi, Nakada &38; Bassett and an estimate of the interstellar extinction we find a distance of ∼300–700 pc. We find unusual line variations at π ∼ 0.9: Hα is seen in absorption and emission. This is at the same point in the orbital phase at which a prominent absorption dip is seen in soft X-rays.  相似文献   

6.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   

7.
It has been proposed that RX J1914.4+2456 is a stellar binary system with an orbital period of 9.5 min. As such it shares many similar properties with RX J0806.3+1527 (5.4 min). However, while the X-ray spectrum of RX J0806.3+1527 can be modelled using a simple absorbed blackbody, the X-ray spectrum of RX J1914.4+2456 has proved difficult to fit using a physically plausible model. In this paper, we re-examine the available X-ray spectra of RX J1914.4+2456 taken using XMM–Newton . We find that the X-ray spectra can be fitted using a simple blackbody and an absorption component which has a significant enhancement of neon compared to the solar value. We propose that the material in the interbinary system is significantly enhanced with neon. This makes its intrinsic X-ray spectrum virtually identical to RX J0806.3+1527. We re-access the X-ray luminosity of RX J1914.4+2456 and the implications of these results.  相似文献   

8.
We present polarimetric and spectroscopic observations of the ROSAT source RX J1141.3−6410, recently identified as a polar. The detection of circular polarization variations, with an amplitude of 10 per cent, over a 3.16-h period confirms that the system is a polar (AM Herculis star). Supporting evidence comes from the nature of the emission lines and their radial velocity variability. In addition, we observe continuum slope changes in the far-red spectral region (∼6000–8200 Å), indicative of phase dependent cyclotron emission. Polarimetric modelling at two wavelengths establishes RX J1141.3−6410 as a single-pole system, with i ∼ β ∼70°. The accretion region is extended in magnetic longitude, and is totally self-occulted for ∼25 per cent of the orbit. The radial velocity curves derived from the emission lines show a phasing with maximum blueshift occurring with Δ φ ∼0.05 of maximum intensity and circular polarisation. In addition, the broader component of the lines exhibit a substantial radial velocity phase shift with respect to the narrower component, in the sense that the broad component preceeds the narrow. This can be readily understood if the narrower component is principally a result of orbital motion of the stream material and the broad component mainly a result of streaming motion near the coupling region. The phasing of the Ca  ii near-infrared line radial velocities also supports this general picture.  相似文献   

9.
Some unidentified EGRET sources have been reported to have probable X-ray counterparts. Periodicities in the X-ray data of those sources, if found, may help to strengthen the identification and to reveal their nature. We performed a detailed search of periodicities with a photon-counting method, the H-test, in the XMM and ASCA data of RX J0007.0+7302, which is the most probable X-ray counterpart to the EGRET source 3EG J0010+7309. Although no periods with enough significance were found, a possible one, at 0.1275433± 0.0000001 s (MJD 52327.03399), is quite intriguing based on results of cross-checking the two data sets. We suggest future analysis with other data to search the vicinity of this period.  相似文献   

10.
The fields of eight X-ray sources in the Magellanic Clouds believed to be Be/X-ray binaries have been searched for possible Be-star counterparts. BVR c and H α CCD imaging was employed to identify early-type emission stars through colour indices and H α fluxes. Spectroscopy of five sources confirms the presence of H α emission in each case. Based on the positional coincidence of emission-line objects with the X-ray sources, we identify Be-star counterparts to the ROSAT sources RX J0032.9-7348, RX J0049.1-7250, RX J0054.9-7226 and RX J0101.0-7206, and to the recently discovered ASCA source AX J0051-722. We confirm the Be star nature of the counterpart to the HEAO1 source H0544-66. In the field of the ROSAT source RX J0051.8-7231 we find that there are three possible counterparts, each showing evidence for H α emission. We find a close double in the error circle of the EXOSAT source EXO 0531.1-6609, each component of which could be a Be star associated with the X-ray source.  相似文献   

11.
We have detected the optical counterpart of the proposed double degenerate polar RX J1914+24. The I -band light curve is modulated on the 9.5-min period seen in X-rays. There is no evidence for any other periods. No significant modulation is seen in J . The infrared colours of RX J1914+24 are not consistent with a main-sequence dwarf secondary star. Our ASCA spectrum of RX J1914+24 is typical of a heavily absorbed polar and our ASCA light curve also shows only the 9.5-min period. We find that the folded I band and X-ray light curves are out of phase. We attribute the I -band flux to the irradiated face of the donor star. The long-term X-ray light curve shows a variation in the observed flux of up to an order of magnitude. These observations strengthen the view that RX J1914+24 is indeed the first double degenerate polar to be detected. In this light, we discuss the synchronizing mechanisms in such a close binary and other system parameters.  相似文献   

12.
Since the first optical detection of RX J0720.4–3125 various observations have been performed to determine astrometric and photometric data. We present the first detection of the isolated neutron star in the V Bessel filter to study the spectral energy distribution and derive a new astrometric position. At ESO Paranal we obtained very deep images with FORS 1 (three hours exposure time) of RX J0720.4–3125 in the V Bessel filter in January 2008. We derive the visual magnitude by standard star aperture photometry. Using sophisticated resampling software we correct the images for field distortions. Then we derive an updated position and proper motion value by comparing its position with FORS 1 observations of December 2000. We calculate a visual magnitude of V = 26.81 ± 0.09 mag, which is seven times in excess of what is expected from X‐ray data, but consistent with the extant U, B, and R data. Over about a seven year epoch difference we measured a proper motion of μ = 105.1 ± 7.4 mas yr–1 towards θ = 296.951° ± 0.0063° (NW), consistent with previous data (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Non-thermal X-rays and very high energy (VHE) γ-rays have been detected from the supernova remnant (SNR) RX J1713.7−3946, and the recent observations with the Suzaku satellite clearly reveal a spectral cut-off in the X-ray spectrum, which directly relates to the cut-off of the energy spectrum of the parent electrons. However, whether the origin of the VHE γ-rays from the SNR is hadronic or leptonic is still in debate. We studied the multi-band non-thermal emission from RX J1713.7−3946 based on a semi-analytical approach towards the non-linear shock acceleration process by including the contribution of the accelerated electrons to the non-thermal radiation. The results show that the multi-band observations on RX J1713.7−3946 can be well explained in the model with appropriate parameters, and the TeV γ-rays have hadronic origin, i.e. they are produced via proton–proton interactions as the relativistic protons accelerated by the shock collide with the ambient matter.  相似文献   

14.
We report on the long-term variability of the Be/X-ray binary LS I +61° 235/RX J0146.9+6121. New optical spectroscopic and infrared photometric observations confirm the presence of global one-armed oscillations in the circumstellar disc of the Be star, and allow us to derive a V R band quasi-period of 1240±30 d. Pronounced shell events, reminiscent of the spectacular variations in Be stars, are also seen. We have found that the J , H and K infrared photometric bands vary in correlation with the spectroscopic V R variations, implying that the one-armed disc oscillations are prograde. The effect of the oscillations is not only seen in the H α line but is also seen in the He  i λ 6678 and Paschen lines. As these lines are formed at different radii in the equatorial disc of the Be star, such effects confirm the global nature of the perturbation. The Keplerian disc has been found to be denser than the average for a sample of isolated Be stars, which may be indicative of some kind of interaction with the compact companion. Finally, from a Rossi X-ray Timing Explorer observation we derive a spin period of the neutron star of 1404.5±0.5 s.  相似文献   

15.
We present the results of a 22.5 ks pointed ROSAT PSPC observation of the 3.4-h period eclipsing polar MN Hya (RX J0929.1−2404). The X-ray light curve exhibits a 'double-humped' shape, with a secondary minimum occuring at φ∼ 0.45, a morphology consistent with two-pole accretion. Strong aperiodic flaring activity, with flux enhancements of ∼ 6 × the quiescent level, is also observed. A pre-eclipse 'dip' occurs in the phase interval φ= 0.87–0.95 with the X-rays becoming harder, indicative of photoelectric absorption by the pre-shock flow. There is also evidence of a secondary spectrally hard 'dip' near φ = 0.45–0.55, which might be associated with a second accretion stream flowing to the other magnetic pole.   The X-ray spectrum is best represented by a combination of a ∼50 eV blackbody and a thermal bremsstrahlung component of kT 1.6 keV, with a total absorption column of N H  = 2.9 × 1020 cm−2.   The primary maximum (φ∼ 0.65) has a slightly larger column and normalization compared to the secondary maximum. Although there are few photons, the dip spectrum is very flat in comparison to other phases, and is best represented by a single bremsstrahlung component. This is indicative of the spectral hardening seen in the light curves attributed to photoabsorption. The ratio of unabsorbed bremsstrahlung and blackbody luminosities is ∼ 0.1 for the best-fitting average spectral models. This implies a magnetic field strength  30 MG on the basis of the empirical L hard/ L soft −  B relationships, although consideration of the cyclotron flux and aspect effects could allow for an even higher field (55 MG).  相似文献   

16.
The detection of near‐infrared (NIR) excess at the position of a star can indicate either a substellar companion or a disk around the respective star. In this work we probed whether a 2.5σ H ‐band flux enhancement at the position of the isolated neutron star RX J0806.4–4123 can be confirmed at another NIR wavelength. We observed RXJ0806.4–4123 in the J ‐band with Gemini South equipped with FLAMINGOS‐2. There was no significant detection of a J ‐band source at the neutron star position. However, similarly to the H ‐band we found a very faint (1.4σ) flux enhancement with a nominal magnitude of J = 24.8 ± 0.5. The overall NIR‐detection significance is 3.1σ. If real, this emission is too bright to come from the neutron star alone. Deeper near‐infrared observations are necessary to confirm or refute the potential NIR excess. The confirmation of such NIR excess could imply that there is a substellar companion or a disk around RXJ0806.4–4123. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We investigate the X-ray and optical properties of a sample of X-ray bright sources from the Small Magellanic Cloud (SMC) Wing Survey. We have detected two new pulsars with pulse periods of 65.8 s (CXOU J010712.6−723533) and 700 s (CXOU J010206.6−714115), and present observations of two previously known pulsars RX J0057.3−7325 (SXP101) and SAX J0103.2−7209 (SXP348). Our analysis has led to three new optical identifications for the detected pulsars. We find long-term optical periods for two of the pulsars, CXOU J010206.6−714115 and SXP101, of 267 and 21.9 d, respectively. Spectral analysis of a subset of the sample shows that the pulsars have harder spectra than the other sources detected. By employing a quantile-based colour–colour analysis we are able to separate the detected pulsars from the rest of the sample. Using archival catalogues we have been able to identify counterparts for the majority of the sources in our sample. Combining this with our results from the temporal analysis of the Chandra data and archival optical data, the X-ray spectral analysis, and by determining the X-ray to optical flux ratios we present preliminary classifications for the sources. In addition to the four detected pulsars, our sample includes two candidate foreground stars, 12 probable active galactic nuclei, and five unclassified sources.  相似文献   

18.
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX J0812.4−3114 and A 0535+26) have previously been suggested to arise from partial eclipses of the emission region by the accretion column occurring once each rotation period. We present pulse-phase spectroscopy from Rossi X-ray Timing Explorer satellite observations of GX 1+4 and RX J0812.4−3114, which for the first time confirms this interpretation. The dip phase corresponds to the closest approach of the column axis to the line of sight, and the additional optical depth of photons escaping from the column in this direction gives rise to both the decrease in flux and increase in the fitted optical depth measured at this phase. Analysis of the arrival time of individual dips in GX 1+4 provides the first measurement of azimuthal wandering of a neutron star accretion column. The column longitude varies stochastically with a standard deviation ranging between 2° and 6° depending on the source luminosity. Measurements of the phase width of the dip both from mean pulse profiles and from the individual eclipses demonstrate that the dip width is proportional to the flux. The variation is consistent with that expected if the azimuthal extent of the accretion column depends only upon the Keplerian velocity at the inner disc radius, which varies as a consequence of the accretion rate M˙ .  相似文献   

19.
We report the discovery of a new AM Herculis binary (polar) as the optical counterpart of the soft X-ray source RX J1724.0+4114 detected during the ROSAT all-sky survey. The magnetic nature of this V  ∼ 17 mag object is confirmed by low-resolution spectroscopy showing strong Balmer and He  II emission lines superimposed on a blue continuum, which is deeply modulated by cyclotron humps. The inferred magnetic field strength is 50 ± 4 MG (or possibly even ≈ 70 MG). Photometric observations spanning ∼ 3 yr reveal a period of 119.9 min, directly below the period gap. The morphology of the optical and X-ray light curves, which do not show eclipses by the secondary star, suggests a self-eclipsing geometry. We derive a lower limit on the distance of d  ≳ 250 pc.  相似文献   

20.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号