首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.  相似文献   

2.
汕头-吕宋岛岩石圈速度结构剖面,划分出华南陆缘古生代陆壳、陆架区晚古生代-中生代陆壳、陆坡带中生代-早第三纪过渡壳、新生代南海海盆洋壳及吕宋岛中生代-新生代岛弧陆壳与东吕宋海槽洋壳等地壳构造组分,并确定了上述地壳构造之间的边界断裂构造及其性质。结合地震震源分布及机制,初步确定了华南陆架盆岭构造带北、南两侧地震构造的控震构造与发震构造性质及其震源力学特征;1)指出1994年9月16日台湾浅滩7.3级地震属于板缘壳幔地震及造成一千公里有感范围的原因;2)马尼拉海沟的海底地堑构造与南海海盆岩石圈地幔上隆是马尼拉海沟俯冲带震源显示正断层性质的原因,且为被动的或转换俯冲带;3)东吕宋海槽仍属于菲律宾海俯冲带性质;吕宋岛东西两侧俯冲带岩石圈板片震源深度的准三层分布,可能表明俯冲带岩石圈板片存在相应的低速滑移层。  相似文献   

3.
重-磁-震联合反演是获取地壳结构的重要方法.此次研究,我们主要基于全球最新的水深、重磁异常、沉积物厚度等数据,结合实测地震数据和前人研究成果,分析了中国海-西太平洋地区的莫霍面展布特征,并利用重磁震联合反演方法获得了跨越中国海-西太平洋典型剖面的地壳结构和异常体分布,揭示了陆壳到洋壳的典型变化规律.结果表明,从浙江地区到马里亚纳俯冲带,地壳结构大致呈现由厚到薄、由老到新、由复杂到简单的特征.浙江地区(扬子块体和华夏块体)地壳结构复杂,三层结构明显,地壳内断裂带发育,并伴有广泛的岩浆侵入;东海地区莫霍面起伏剧烈,地壳厚度变化较大,冲绳海槽地壳明显减薄,是其过渡壳性质的体现;西菲律宾海盆、九州-帕劳海脊、帕里西维拉海盆、马里亚纳俯冲带等构造单元地壳结构相对简单,二层结构明显.其中,西菲律宾海盆和帕里西维拉海盆地壳内部磁异常变化较为剧烈,海盆扩张过程中形成的磁异常体分布广泛,地壳厚度(5~8 km)明显小于陆壳;九州-帕劳海脊地壳厚度可达~20 km,缺失中地壳,表现为岛弧地壳结构;同源的西马里亚纳岛弧和东马里亚纳火山弧地壳结构相似,浅层磁异常体分布广泛,西马里亚纳岛弧地壳厚度(~17 km)略小于东马里亚纳火山弧(~20 km),体现了裂离的不对称性;马里亚纳海槽具有正常的洋壳结构(~7 km),但扩张中心未发生明显破裂.对比各构造单元地壳结构的异同点,我们进一步认识到,陆壳与洋壳之间不是孤立的,陆壳可能会演化出洋壳的结构或组分,板块的演化总是处于动态循环过程中.此研究加深了我们对中国海-西太平洋深部构造特征的整体理解,促进了我们对大陆边缘演化与板块相互作用的认识,深化了我国管辖海域及邻近地区的基础地质调查.  相似文献   

4.
The island of Crete is located in the forearc of the Hellenic subduction zone, where the African lithospheric plate is subducting beneath the Eurasian one. The depth of the plate contact as well as the internal structure of the Aegean plate in the area of Crete have been a matter of debate. In this study, seismic constrains obtained by wide-angle seismic, receiver function and surface wave studies are discussed and compared to a 3D density model of the region.The interface between the Aegean continental lithosphere and the African one is located at a depth of about 50 km below Crete. According to seismic studies, the Aegean lithosphere in the area of Crete is characterised by strong lateral, arc–parallel heterogeneity. An about 30 km thick Aegean crust is found in central Crete with a density of about 2850 kg/m3 for the lower Aegean continental crust and a density of about 3300 kg/m3 for the mantle wedge between the Aegean crust and the African lithosphere. For the deeper crust in the area of western Crete two alternative models have been proposed by seismic studies. One with an about 35 km thick crust and another one with crustal velocities down to the plate contact. A grid search is performed to test the consistency of these models with gravimetric constraints. For western Crete a model with a thick lower Aegean crust and a density of about 2950 kg/m3 is favoured. The inferred density of the lower Aegean crust in the area of Crete correlates well with S-wave velocities obtained by surface wave studies.Based on the 3D density model, the weight of the Aegean lithosphere is estimated along an E–W oriented profile in the area of Crete. Low weights are found for the region of western Crete.  相似文献   

5.
南海北部陆缘东部的地壳结构   总被引:56,自引:7,他引:49       下载免费PDF全文
本文利用中、美联合调查南海海洋地质项目所采集的双船地震扩展排列剖面资料,研究了南海北部陆缘的地壳结构.其特征为:从陆架到深海平原,地壳呈阶梯状减薄,地壳厚度分别为26-28km,23-24km,13-15km,以及南海洋盆中5-7km厚的洋壳,反映了地壳在新生代早期是幕式拉张的.地壳底部存在高速地壳层,地震波速度为7.1-7.4km/s.它是在地壳被拉张后,上地幔熔融物质上涌到地壳底部冷却而形成的.  相似文献   

6.
Crustal structures around the Yamato Basin in the southeastern Sea of Japan, inferred from recent ocean bottom seismography (OBS) and active-source seismological studies, are reviewed to elucidate various stages of crustal modification involved from rifting in the crust of the surrounding continental arc to the production of oceanic crust in the Yamato Basin of the back-arc basin. The northern, central, and southern areas of the Yamato Basin have crustal thicknesses of approximately 12–16 km, and lowermost crusts with P-wave velocities greater than 7.2 km/s. Very few units have P-wave velocities in the range 5.4–6.0 km/s, which corresponds to the continental upper crust. These findings, combined with previous geochemical analysis of basalt samples, are interpreted to indicate that a thick oceanic crust has been formed in these areas of the basin, and that this oceanic crust has been underplated by mantle-derived magma. In the central Yamato Basin, the original continental crust has been fully breached and oceanic crust has been formed. Conversely, the presence of a unit corresponding to the continental upper crust and the absence of a high-velocity part in the lower crust implies that the southwestern edge of the Yamato Basin has a rifted crust without significant intrusion. The Oki Trough has a crust that is 17–19 km thick with a high-velocity lower crust and a unit corresponding to the continental upper crust. The formation of the Oki Trough resulted from rifting with magmatic intrusion and/or underplating. We interpret these variations in the crustal characteristics of the Yamato Basin area as reflecting various instances of crustal modification by thinning and magmatic intrusion due to back-arc extension, resulting in the production of a thick oceanic crust in the basin.  相似文献   

7.
Increased source strength, streamer length and dense spatial coverage of seismic reflection profiles of the SEISMARMARA Leg 1 allow to image the deep structure of the marine North Marmara Trough (NMT) on the strike-slip North Anatolian Fault (NAF) west of the destructive Izmit 1999 earthquake. A reflective lower crust and the Moho boundary are detected. They appear upwarped on an E-W profile from the southern Central Basin eastwards, towards more internal parts of the deformed region. Thinning of the upper crust could use a detachment suggested from an imaged dipping intracrustal reflector that would allow upper crustal material to be dragged from beneath it and above the lower crust, accounting for the extensional component but also southwest motion of the southern margin of the NMT. Sections across the eastern half of the NMT, crossing the Cinarcik and Imrali basins, reveal several faults that are active reaching into the basement and have varying strike and proportions of normal and strike-slip displacement. They might be viewed as petals of a large scale negative flower-structure that spreads over a width of 30 km at surface and is rooted deeper in the lithosphere. Under the Central Basin a very thick sediment infill is revealed and its extensional bounding faults are active and imaged as much as 8 km apart down to 6 km depth. We interpret them as two deep-rooted faults encompassing a foundering basement block, rather than being merely pulled-apart from a jog in a strike-slip above a décollement. The deep-basin lengthening would account for only a modest part of the proposed 60 km finite motion since 4 Myr along the same direction oblique to the NMT that sidesteps the shear motion from its two ends. Thus differential motion occurred much beyond the deep basins, like subsidence involving the NMT bounding faults and the intracrustal detachments. The complex partitioned motion localized on active faults with diverse natures and orientations is suggested to represent the overburden deformation induced from horizontal plane simple shear occurring in depth at lithospheric scale, and in front of the North Anatolian Fault when it propagated through the region.  相似文献   

8.
南海地区岩石圈资料稀少,阻碍了其形成演化过程的研究.为此,本次研究结合大地热流、空间重力异常、高程、大地水准面和地震数据,在南海西南次海盆反演了两条2.5维岩石圈剖面.本次计算基于三种假设:岩石圈地幔的密度取决于岩石温度;研究区岩石圈处于热稳定状态;研究区处于重力均衡状态.在剖面A-E中,岩石圈底界面从珠江口盆地的105 km迅速抬升到西沙海槽处的50 km,在西沙海槽、西沙-中沙群岛和西南次海盆变化不大,为50~60 km.在剖面F-I中,岩石圈底界面从西沙群岛-中建地块处的88 km向海盆逐渐抬升,在西南次海盆处为46~50 km,到郑和隆起再逐渐变深至64 km.我们比较了西南次海盆岩石圈的冷却模型和热稳定模型,根据冷却模型由水深和热流数据所推断的西南次海盆年龄比实际年龄差很多,说明冷却模型不适用于西南次海盆.通过对比剖面A-E和剖面F-I,说明了剖面A-E经历了更长时间的拉伸,证明南海西南次海盆在形成演化过程中是从北东向南西逐步打开的渐进式扩张.最后,我们综合分析西南次海盆及其大陆边缘的岩石圈结构、减薄陆壳区范围、碳酸盐台地的分布、下地壳韧性流动、流变结构和沉积层特征等多方面资料,认为西南次海盆在形成演化过程中岩石圈地幔首先破裂而地壳后破裂,属于type Ⅱ型非火山型大陆边缘.  相似文献   

9.
From an analysis of many seismic profiles across the stable continental regions of North America and northern Europe, the crustal and upper mantle velocity structure is determined. Analysis procedures include ray theory calculations and synthetic seismograms computed using reflectivity techniques. TheP wave velocity structure beneath the Canadian Shield is virtually identical to that beneath the Baltic Shield to a depth of at least 800 km. Two major layers with a total thickness of about 42 km characterize the crust of these shield regions. Features of the upper mantle of these region include velocity discontinuities at depths of about 74 km, 330 km, 430 km and 700 km. A 13 km thickP wave low velocity channel beginning at a depth of about 94 km is also present.A number of problems associated with record section interpretation are identified and a generalized approach to seismic profile analysis using many record sections is described. TheS wave velocity structure beneath the Canadian Shield is derived from constrained surface wave data. The thickness of the lithosphere beneath the Canadian and Baltic Shields is determined to be 95–100 km. The continental plate thickness may be the same as the lithospheric thickness, although available data do not exclude the possibility of the continental plate being thicker than the lithosphere.  相似文献   

10.
In a general lithospheric model of a simple divergent ocean and continental margin that satisfies the constraints of isostasy and gravity anomalies, the free-air gravity anomaly at the margin is modelled by an oceanic crust that thickens exponentially toward the margin from its common value of 6.4 km about 600 km from the margin to 17.7 km at the margin; this postulated thickening is supported empirically by seismic refraction measurements made near continental margins. The thickness of the oceanic crust matches that of the continental lithosphere at breakup, as observed today in Afar and East Africa, and is interpreted as the initial oceanic surface layer chilled against the continental lithosphere. With continued plate accretion, the chilled oceanic crust thins exponentially to a steadystate thickness, which is achieved about 40 m.y. after breakup. These findings contrast with the generally held view that the oceanic crust has a uniform thickness.During the first 40 m.y. of spreading, the thicker oceanic crust, of density 2.86 g/cm3, displaces the denser (3.32 g/cm3) subjacent material; by isostasy, the spreading ridge and the rest of the seafloor thus stand higher in younger( <40m.y.) oceans than they do in older(>40m.y.) oceans. This is postulated to be the cause of the empirical relationship between the crestal depth of spreading ridges and the age (or half-width) of ocean basins.  相似文献   

11.
《Journal of Geodynamics》2008,45(3-5):173-185
The island of Crete is located in the forearc of the Hellenic subduction zone, where the African lithospheric plate is subducting beneath the Eurasian one. The depth of the plate contact as well as the internal structure of the Aegean plate in the area of Crete have been a matter of debate. In this study, seismic constrains obtained by wide-angle seismic, receiver function and surface wave studies are discussed and compared to a 3D density model of the region.The interface between the Aegean continental lithosphere and the African one is located at a depth of about 50 km below Crete. According to seismic studies, the Aegean lithosphere in the area of Crete is characterised by strong lateral, arc–parallel heterogeneity. An about 30 km thick Aegean crust is found in central Crete with a density of about 2850 kg/m3 for the lower Aegean continental crust and a density of about 3300 kg/m3 for the mantle wedge between the Aegean crust and the African lithosphere. For the deeper crust in the area of western Crete two alternative models have been proposed by seismic studies. One with an about 35 km thick crust and another one with crustal velocities down to the plate contact. A grid search is performed to test the consistency of these models with gravimetric constraints. For western Crete a model with a thick lower Aegean crust and a density of about 2950 kg/m3 is favoured. The inferred density of the lower Aegean crust in the area of Crete correlates well with S-wave velocities obtained by surface wave studies.Based on the 3D density model, the weight of the Aegean lithosphere is estimated along an E–W oriented profile in the area of Crete. Low weights are found for the region of western Crete.  相似文献   

12.
A 400 km-long wide-angle seismic experiment along Lianxian-Gangkou profile in South China was carried out to study contact relationship between southeast continental margin of Yangtze block and northwest continental margin of Cathaysia block. We reconstructed crustal wide-angle reflection structure by the depth-domain pre-stack migration and the crustal velocity model constructed from the traveltime fitting. The wide-angle reflection section shows different reflection (from crystalline basement and Moho) pattern beneath the Yangtze and Cathaysia blocks, and suggests the Wuchuan-Sihui fault is the boundary between them. A cluster of well-developed reflections on Moho and in its underlying topmost mantle probably comes from alternative thin layers, which may be seismic signature of strong interaction between crust and mantle in the tectonic environment of lithosphere extension.  相似文献   

13.
南海海盆三维重力约束反演莫霍面深度及其特征   总被引:3,自引:3,他引:0       下载免费PDF全文
利用南海海盆及周边最新的重力,经过海底地形、沉积层的重力效应改正,并采用岩石圈减薄模型的温度场公式,校正了从张裂边缘到扩张海盆的热扰动重力效应.通过研究区的地震剖面和少量声呐数据得到的莫霍面深度点作为约束,采用基于"起伏界面初始模型"的深度修正量反演迭代公式,反演、计算了研究区的莫霍面深度及地壳厚度.结果表明,海盆区莫霍面深度在8~14 km之间,地壳厚度在3~9 km之间;东部海盆和西南海盆残留扩张中心沿NNE向展布向西南延伸至112°E,莫霍面深度超过12 km,地壳厚度在6 km以上,而西北海盆没有明显的增厚扩张中心;在西南海盆北缘的中沙地块南侧,存在一个近EW向地壳减薄带,地壳厚度在9~10 km;莫霍面深度14 km的等深线和地壳厚度9 km的等值线可指示洋陆边界位置.  相似文献   

14.
印度-欧亚碰撞与洋—陆碰撞的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
观测的证据充分表明,印度——欧亚的缝合带雅鲁藏布江上存在自南向北的地壳俯冲带,它穿过莫霍面,深度大约达到100 km. 喜马拉雅中可能存在多重的地壳俯冲. 它们有别于海洋碰撞时所产生的整个岩石圈俯冲. 作者观测到雅鲁藏布江以北上地幔的板片构造,它可以解释为印度向欧亚俯冲时上地幔岩石圈的痕迹. 它们说明与洋——陆的俯冲不同,印度向欧亚俯冲时,地壳与上地幔岩石圈出现拆层现象. 综合现有的地壳上地幔构造,显示在不同地质年代中,印度与欧亚之间产生自南向北以及自北向南相反方向的俯冲,而且俯冲带周围出现某些速度异常区.   相似文献   

15.
Based on deep seismic sounding data, a velocity model of the Earth's crust has been developed for the Kamchatkan segment of the Pacific transition zone. The velocity difference in the structure of the continental and oceanic blocks of the Earth's crust is shown. It has been revealed that these crustal blocks join each other along the deeply inclined fault zone. This zone is located 120 km northwest of the axis of the deep-sea trench. It separates the high-velocity block of eastern peninsulas and bays of Kamchatka from the low-velocity block of the Shatsky Ridge. The latter may be considered to be a contact zone between the continental and oceanic crust.The crust of the regions of Recent volcanic activity in Kamchatka has a number of specific features, such as: a complex heterogeneous structure of the basement; relatively high velocity values in the crust and low values in the upper mantle; anomalous behaviour and velocity inversions related to the complex alternation of sedimentary-volcanogenous and intrusive rocks and zones of hydrothermal alterations; and the possible presence of magma chambers of different types within the crust and the crust-mantle transition zone.  相似文献   

16.
南海岩石层及边界构造的地球物理特征   总被引:3,自引:3,他引:0       下载免费PDF全文
南海经历了中生代主动大陆边缘到新生代被动大陆边缘的转换,其岩石层地球物理场具有明显的块、带特征.本文通过综合分析南海地区深地震探测、面波层析成像、重磁异常以及地热与岩石层流变学等各种地质地球物理资料,对南海地壳及岩石层的综合地球物理特征进行了深入总结,发现深地震探测剖面所确定的洋、陆壳转换位置与空间重力异常梯级带位置较为一致,据此拟定了南海洋、陆壳的转换边界;依据多条地壳结构剖面中拉张减薄的程度确定了正常减薄陆壳、洋陆壳过渡带及洋壳等属性特征,并初步圈定了南海下地壳高速层的分布范围.对比分析了南、北陆缘地壳结构及其拉张减薄的变化特征,从综合地球物理特征的相似性上推测了北部陆缘的中西沙陆块与南部陆缘的南沙礼乐滩陆块具有共轭对称性.依据S波速度梯度变化确定了南海岩石层厚度分布情况,揭示出南海北部陆缘存在一条岩石层厚度的减薄带,且该减薄带与高热流带具有较好的一致性.在综合分析的基础上,以深地震探测剖面与重、磁异常变化的对应性为基础,划定了南海边界构造的位置.  相似文献   

17.
喜马拉雅构造带及其临近区域是印度板块与欧亚大陆板块挤压碰撞的前缘地带.本文利用GPS实测速度场与震源机制解数据分别计算了研究区域现今地壳岩石圈表面的GPS应变场及岩石圈内部的主应力分布,研究了印度板块持续挤压作用下板块边界带地壳岩石圈现今地壳形变的空间分布特征.结果显示,南北向的剧烈挤压变形与东西向的拉伸变形是现今青藏高原南缘地壳岩石圈的主要变形特征.其中南北向的地壳挤压变形主要集中在主前缘冲断带与雅鲁藏布江缝合带之间.东西方向上,南北走向的亚东—谷露断裂是区域地壳东西向伸展变形的重要分界断裂.75°E是研究区域地壳形变的另一条显著不连续边界,其西侧地壳主压应变强度低、方向弥散且最大主压应力方向一致性较差,而东侧地壳主压应变方向与主压应力方向以及地壳水平运动速度场方向均具有较好的一致性.布格重力异常的小波多尺度辨析结果显示该分界带与循喜马拉雅西构造结楔入欧亚大陆的印度板块密切相关.  相似文献   

18.
Wide-angle seismic surveys performed in the last decade have clarified the 3-D crustal structure along the Nankai Trough. The geometry and velocity structure of the southwestern Japan subduction zone are now well constrained. Comparing these observations with the rupture distribution of historic great thrust earthquakes, it appears that the coseismic rupture occurred along plate boundaries deeper than the wedge/backstop boundary (the boundary between the Neogene-Quaternary accretionary wedge and the crust forming the backstop). From the view of spatial relationship, both rupture distributions of the last two large events and the crust forming the backstop are considerably retreated from the trough axis in the west and east off the Kii Peninsula. In both areas, seamount or ridge subduction is apparent in seismic results, geomorphological data and geomagnetic data. The landward indentation of the deformable backstop, which corresponds to the crustal block of old accreted sediments, may be formed by seamount subduction according to published results of sandbox modeling. In particular, the subducted seamount may be a structural factor affecting the recession of the crustal block forming the backstop.  相似文献   

19.
根据对恒河盆地西部的多振型宽频带面波频散资料的分析推断,该区的地壳结构不具有大陆地盾的特征,相反,却非常象某些海洋高地。这一异常的海洋型地壳与恒河盆地东部地盾地壳的分界线可能在阿拉瓦利山脉(Aravalli Ridge)。该处地壳的地质特征具有异常高的电导率,其走向垂直于喜马拉雅山脉。目前广为接受的假定认为是构造均匀的印度大陆岩石圈向喜马拉雅山下俯冲。本文的研究结果对此观点提出了置疑:在北部印度大陆内的地壳运动可能存在着差异。我们追溯印度-欧亚大陆的碰撞历史,这个因素恐怕是不容忽视的。  相似文献   

20.
The Rockall Trough separates the Rockall Plateau microcontinent from the shelf and slope west of the British Isles. The structure and age of the trough has been the source of considerable discussion. Although widely considered to be of oceanic origin, postulated ages for the spreading range from Permian to Cretaceous. New seismic profiles linked to the IPOD sites in the Bay of Biscay and to oceanic anomalies of known age are used to present a new assessment of the age and structure of the southern Rockall Trough. It is concluded that about 120 km of ocean crust is present in the trough and that spreading took place in the Albian-Maastrichtian interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号