首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an earlier paper, we quantified the mean merger rate of dark matter haloes as a function of redshift z , descendant halo mass M 0, and progenitor halo mass ratio ξ using the Millennium simulation of the Λ cold dark matter cosmology. Here, we broaden that study and investigate the dependence of the merger rate of haloes on their surrounding environment. A number of local mass overdensity variables, both including and excluding the halo mass itself, are tested as measures of a halo's environment. The simple functional dependence on   z , M 0  , and ξ of the merger rate found in our earlier work, is largely preserved in different environments, but we find that the overall amplitude of the merger rate has a strong positive correlation with the environmental densities. For galaxy-mass haloes, we find mergers to occur ∼2.5 times more frequently in the densest regions than in voids at both   z = 0  and higher redshifts. Higher mass haloes show similar trends. We present a fitting form for this environmental dependence that is a function of both mass and local density and valid out to   z = 2  . The amplitude of the progenitor (or conditional) mass function shows a similar correlation with local overdensity, suggesting that the extended Press–Schechter model for halo growth needs to be modified to incorporate environmental effects.  相似文献   

2.
The excursion set theory of halo formation is modified by adopting the fractional Brownian motion, to account for possible correlation between merging steps. We worked out analytically the conditional mass function, halo merging rate and formation time distribution in the spherical collapse model. We also developed an approximation for the ellipsoidal collapse model and applied it to the calculation of the conditional mass function and the halo formation time distribution. For models in which the steps are positively correlated, the halo merger rate is enhanced when the accreted mass is less than  ∼25 M *  , while for the negatively correlated case this rate is reduced. Compared with the standard model in which the steps are uncorrelated, the models with positively correlated steps produce more aged population in small mass haloes and more younger population in large mass haloes, while for the models with negatively correlated steps the opposite is true. An examination of simulation results shows that a weakly positive correlation between successive merging steps appears to fit best. We have also found a systematic effect in the measured mass function due to the finite volume of simulations. In future work, this will be included in the halo model to accurately predict the three-point correlation function estimated from simulations.  相似文献   

3.
We explore a possible origin for the puzzling anti-correlation between the formation epoch of galactic dark-matter haloes and their environment density. This correlation has been revealed from cosmological N -body simulations and is in conflict with the extended Press–Schechter model of halo clustering. Using similar simulations, we first quantify the straightforward association of an early formation epoch with a reduced mass-growth rate at late times. We then find that a primary driver of suppressed growth, by accretion and mergers, is tidal effects dominated by a neighbouring massive halo. The tidal effects range from a slowdown of the assembly of haloes due to the shear along the large-scale filaments that feed the massive halo to actual mass loss in haloes that pass through the massive halo. Using the restricted three-body problem, we show that haloes are prone to tidal mass loss within 1.5 virial radii of a larger halo. Our results suggest that the dependence of the formation epoch on environment density is a secondary effect induced by the enhanced density of haloes in filaments near massive haloes where the tides are strong. Our measures of assembly rate are particularly correlated with the tidal field at high redshifts   z ∼ 1  .  相似文献   

4.
We use numerical simulations of a (480 Mpc  h −1)3 volume to show that the distribution of peak heights in maps of the temperature fluctuations from the kinematic and thermal Sunyaev–Zeldovich (SZ) effects will be highly non-Gaussian, and very different from the peak-height distribution of a Gaussian random field. We then show that it is a good approximation to assume that each peak in either SZ effect is associated with one and only one dark matter halo. This allows us to use our knowledge of the properties of haloes to estimate the peak-height distributions. At fixed optical depth, the distribution of peak heights resulting from the kinematic effect is Gaussian, with a width that is approximately proportional to the optical depth; the non-Gaussianity comes from summing over a range of optical depths. The optical depth is an increasing function of halo mass and the distribution of halo speeds is Gaussian, with a dispersion that is approximately independent of halo mass. This means that observations of the kinematic effect can be used to put constraints on how the abundance of massive clusters evolves, and on the evolution of cluster velocities. The non-Gaussianity of the thermal effect, on the other hand, comes primarily from the fact that, on average, the effect is larger in more massive haloes, and the distribution of halo masses is highly non-Gaussian. We also show that because haloes of the same mass may have a range of density and velocity dispersion profiles, the relation between halo mass and the amplitude of the thermal effect is not deterministic, but has some scatter.  相似文献   

5.
6.
Accepted 1998 January 26. Received 1998 January 26; in original form 1997 August 13This paper presents a stochastic approach to the clustering evolution of dark matter haloes in the Universe. Haloes, identified by a Press–Schechter-type algorithm in Lagrangian space, are described in terms of 'counting fields', acting as non-linear operators on the underlying Gaussian density fluctuations. By ensemble-averaging these counting fields, the standard Press–Schechter mass function as well as analytic expressions for the halo correlation function and corresponding bias factors of linear theory are obtained, extending the recent results by Mo & White. The non-linear evolution of our halo population is then followed by solving the continuity equation, under the sole hypothesis that haloes move by the action of gravity. This leads to an exact and general formula for the bias field of dark matter haloes, defined as the local ratio between their number density contrast and the mass density fluctuation. Besides being a function of position and 'observation' redshift, this random field depends upon the mass and formation epoch of the objects and is both non-linear and non-local. The latter features are expected to leave a detectable imprint on the spatial clustering of galaxies, as described, for instance, by statistics like the bispectrum and the skewness. Our algorithm may have several interesting applications, among which is the possibility of generating mock halo catalogues from low-resolution N -body simulations.  相似文献   

7.
We use a semi-analytic model of galaxy formation to study signatures of large-scale modulations in the star formation (SF) activity in galaxies. In order to do this, we carefully define local and global estimators of the density around galaxies. The former are computed using a voronoi tessellation technique and the latter are parametrized by the normalized distance to haloes and voids, in terms of the virial and void radii, respectively. As a function of local density, galaxies show a strong modulation in their SF, a result that is in agreement with those from several authors. When taking subsamples of equal local density at different large-scale environments, we find relevant global effects whereby the fraction of red galaxies diminishes for galaxies in equal local density environments farther away from clusters and closer to voids. In general, the semi-analytic simulation is in good agreement with the available observational results, and offers the possibility to disentangle many of the processes responsible for the variation of galaxy properties with the environment; we find that the changes found in samples of galaxies with equal local environment but different distances to haloes or voids come from the variations in the underlying mass function of dark matter (DM) haloes. There is an additional possible effect coming from the host DM halo ages, indicating that halo assembly also plays a small but significant role (1.14σ) in shaping the properties of galaxies, and in particular, hints at a possible spatial correlation in halo/stellar mass ages. An interesting result comes from the analysis of the coherence of flows in different large-scale environments of fixed local densities; the neighbourhoods of massive haloes are characterized by lower coherences than control samples, except for galaxies in filament-like regions, which show highly coherent motions.  相似文献   

8.
We study the environmental dependence of the formation epoch of dark matter haloes in the Millennium Simulation: a ten billion particle N -body simulation of standard Lambda cold dark matter cosmology. A sensitive test of this dependence – the marked correlation function – reveals highly significant evidence that haloes of a given mass form earlier in denser regions. We define a marked cross-correlation function, which helps quantify how this effect depends upon the choice of the halo population used to define the environment. The mean halo formation redshift as a function of the local overdensity in dark matter is also well determined, and we see an especially clear dependence for galaxy-sized haloes. This contradicts one of the basic predictions of the excursion set model of structure formation, even though we see that this theory predicts other features of the distribution of halo formation epochs rather well. It also invalidates an assumption usually employed in the popular halo, or halo occupation distribution, models of galaxy clustering, namely that the distribution of halo properties is a function of halo mass but not of halo environment.  相似文献   

9.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

10.
We calculate the cooling times at constant density for haloes with virial temperatures from 100 K to  1×105 K  that originate from a 3 σ fluctuation of a CDM power spectrum in three different cosmologies. Our intention is to determine the first objects that can cool to low temperatures, but not to follow their dynamical evolution. We identify two generations of haloes: those with low virial temperatures,   T vir≲9000 K  that remain largely neutral, and those with larger virial temperatures that become ionized. The lower temperature, lower mass haloes are the first to cool to 75 per cent of their virial temperature. The precise temperature and mass of the first objects are dependent upon the molecular hydrogen (H2) cooling function and the cosmological model. The higher mass haloes collapse later but, in this paradigm, cool much more efficiently once they have done so, first via electronic transitions and then via molecular cooling: in fact, a greater residual ionization once the haloes cool below 9000 K results in an enhanced H2 production and hence a higher cooling rate at low temperatures than for the lower mass haloes, so that within our constant-density model it is the former that are the first to cool to really low temperatures. We discuss the possible significance of this result in the context of CDM models in which the shallow slope of the initial fluctuation spectrum on small scales leads to a wide range of halo masses (of differing overdensities) collapsing over a small redshift interval. This 'crosstalk' is sufficiently important that both high- and low-mass haloes collapse during the lifetimes of the massive stars which may be formed at these epochs. Further investigation is thus required to determine which generation of haloes plays the dominant role in early structure formation.  相似文献   

11.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

12.
We present a stochastic approach to the spatial clustering of dark matter haloes in Lagrangian space. Our formalism is based on a local formulation of the 'excursion set' approach by Bond et al., which automatically accounts for the 'cloud-in-cloud' problem in the identification of bound systems. Our method allows us to calculate correlation functions of haloes in Lagrangian space using either a multidimensional Fokker–Planck equation with suitable boundary conditions, or an array of Langevin equations with spatially correlated random forces. We compare the results of our method with theoretical predictions for the halo autocorrelation function considered in the literature, and find good agreement with the results recently obtained within a treatment of halo clustering in terms of 'counting fields' by Catelan et al. Finally, the possible effect of spatial correlations on numerical simulations of halo merger trees is discussed.  相似文献   

13.
14.
We develop a method to measure the probability, P ( N;   M ), of finding N galaxies in a dark matter halo of mass M from the theoretically determined clustering properties of dark matter haloes and the observationally measured clustering properties of galaxies. Knowledge of this function and the distribution of the dark matter completely specifies all clustering properties of galaxies on scales larger than the size of dark matter haloes. Furthermore, P ( N;   M ) provides strong constraints on models of galaxy formation, since it depends upon the merger history of dark matter haloes and the galaxy–galaxy merger rate within haloes. We show that measurements from a combination of the Two Micron All Sky Survey and Sloan Digital Sky Survey or Two-degree Field Galaxy Redshift Survey data sets will allow P ( N;   M ) averaged over haloes occupied by bright galaxies to be accurately measured for N =0–2 .  相似文献   

15.
We use an extremely large volume  (2.4  h −3 Gpc3)  , high-resolution N -body simulation to measure the higher order clustering of dark matter haloes as a function of mass and internal structure. As a result of the large simulation volume and the use of a novel 'cross-moment' counts-in-cells technique which suppresses discreteness noise, we are able to measure the clustering of haloes corresponding to rarer peaks than was possible in previous studies; the rarest haloes for which we measure the variance are 100 times more clustered than the dark matter. We are able to extract, for the first time, halo bias parameters from linear up to fourth order. For all orders measured, we find that the bias parameters are a strong function of mass for haloes more massive than the characteristic mass   M *  . Currently, no theoretical model is able to reproduce this mass dependence closely. We find that the bias parameters also depend on the internal structure of the halo up to fourth order. For haloes more massive than   M *  , we find that the more concentrated haloes are more weakly clustered than the less concentrated ones. We see no dependence of clustering on concentration for haloes with masses   M < M *  ; this is contrary to the trend reported in the literature when segregating haloes by their formation time. Our results are insensitive to whether haloes are labelled by the total mass returned by the friends-of-friends group finder or by the mass of the most massive substructure. This implies that our conclusions are not an artefact of the particular choice of group finding algorithm. Our results will provide important input to theoretical models of galaxy clustering.  相似文献   

16.
We study the mass assembly history (MAH) of dark matter haloes. We compare MAHs obtained using (i) merger trees constructed with the extended Press–Schechter (EPS) formalism, (ii) numerical simulations and (iii) the Lagrangian perturbation code pinocchio . We show that the pinocchio MAHs are in excellent agreement with those obtained using numerical simulations, while the EPS formalism predicts MAHs that occur too late. pinocchio , which is much less CPU intensive than N -body simulation, can be run on a simple personal computer, and does not require any labour intensive post-simulation analysis, therefore provides a unique and powerful tool to investigate the growth history of dark matter haloes. Using a suite of 55 pinocchio simulations, with 2563 particles each, we study the MAHs of 12 924 cold dark matter (CDM) haloes in a ΛCDM concordance cosmology. This is by far the largest set of haloes used for any such analysis. For each MAH we derive four different formation redshifts, which characterize different epochs during the assembly history of a dark matter halo. We show that haloes less massive than the characteristic non-linear mass scale establish their potential wells much before they acquire most of their mass. The time when a halo reaches its maximum virial velocity roughly divides its mass assembly into two phases, a fast-accretion phase which is dominated by major mergers, and a slow-accretion phase dominated by minor mergers. Each halo experiences about 3 ± 2 major mergers since its main progenitor had a mass equal to 1 per cent of the final halo mass. This major merger statistic is found to be virtually independent of halo mass. However, the average redshift at which these major mergers occur is strongly mass dependent, with more massive haloes experiencing their major mergers later.  相似文献   

17.
Using a high-resolution cosmological N -body simulation, we identify the ejected population of subhaloes, which are haloes at redshift   z = 0  but were once contained in more massive 'host' haloes at high redshifts. The fraction of the ejected subhaloes in the total halo population of the same mass ranges from 9 to 4 per cent for halo masses from  ∼1011  to  ∼1012  h −1 M  . Most of the ejected subhaloes are distributed within four times the virial radius of their hosts. These ejected subhaloes have distinct velocity distribution around their hosts in comparison to normal haloes. The number of subhaloes ejected from a host of given mass increases with the assembly redshift of the host. Ejected subhaloes in general reside in high-density regions, and have a much higher bias parameter than normal haloes of the same mass. They also have earlier assembly times, so that they contribute to the assembly bias of dark matter haloes seen in cosmological simulations. However, the assembly bias is not dominated by the ejected population, indicating that large-scale environmental effects on normal haloes are the main source for the assembly bias.  相似文献   

18.
Older and more recent pieces of observational evidence suggest a strong connection between QSOs and galaxies; in particular, the recently discovered correlation between black hole and galactic bulge masses suggests that QSO activity is directly connected to the formation of galactic bulges. The cosmological problem of QSO formation is analysed in the framework of an analytical model for galaxy formation; for the first time a joint comparison with galaxy and QSO observables is performed. In this model it is assumed that the same physical variable that determines galaxy morphology is able to modulate the mass of the black hole responsible for QSO activity. Both halo spin and the occurrence of a major merger are considered as candidates for this role. The predictions of the model are compared with available data for the type-dependent galaxy mass functions, the star formation history of elliptical galaxies, the QSO luminosity function and its evolution (including the obscured objects contributing to the hard-X-ray background), the mass function of dormant black holes and the distribution of black hole-to-bulge mass ratios. A good agreement with observations is obtained if the halo spin modulates the efficiency of black hole formation, and if the galactic haloes at z =0 have shone in an inverted order with respect to the hierarchical one (i.e., stars and black holes in bigger galactic haloes have formed before those in smaller ones). This inversion of hierarchical order for galaxy formation, which reconciles galaxy formation with QSO evolution, is consistent with many pieces of observational evidence.  相似文献   

19.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

20.
We study the properties of the three-dimensional and projected shapes of haloes using high-resolution numerical simulations and observational data where the latter comes from the 2PIGG [2dFGRS (2-degree Field Galaxy Redshift Survey) Percolation Inferred Galaxy Groups] and Data Release 3 of the Sloan Digital Sky Survey (SDSS-DR3GC) group catalogues. We investigate the dependence of the halo shape on characteristics such as mass and number of members. In the three-dimensional case, we find a significant correlation between the mass and the halo shape; massive systems are more prolate than small haloes. We detect a source of strong systematics in estimates of the triaxiality of a halo, which is found to be a strong function of the number of members; Lambda cold dark matter haloes usually characterized by triaxial shapes, slightly bent towards prolate forms, appear more oblate when taking only a small subset of the halo particles.
The ellipticities of observed 2PIGG and SDSS-DR3GC groups are found to be strongly dependent on the number of group members, so that poor groups appear more elongated than rich ones. However, this is again an artefact caused by poor statistics and not an intrinsic property of the galaxy groups, nor an effect from observational biases. We interpret these results with the aid of a GALFORM (Cole et al.) mock 2PIGG catalogue. When comparing the group ellipticities in mock and real catalogues, we find an excellent agreement between the trends of shapes with number of group members. When carefully taking into account the effects of low-number statistics, we find that more massive groups are consistent with more elongated shapes. Finally, our studies find no significant correlations between the shapes of observed 2PIGG or SDSS-DR3GC groups with the properties of galaxy members such as colour- or spectral-type index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号