首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
北祁连中段俄博沟火山岩形成于早奥陶纪(单颗粒锆石U-Pb LA-ICP-MS加权平均年龄(453.6±5.8)Ma),火山岩以中基性火山岩为主,中酸性火山岩次之,岩相以爆发相、喷溢相为主。岩石组合、地球化学特征以及年代学对比表明这套岩石形成于洋壳俯冲背景之下的陆缘弧环境。中基性岩石形成于俯冲板片脱水导致上覆地幔楔的部分熔融,且岩浆经历了一定程度的分异结晶作用;而酸性岩石形成于基性下地壳的部分熔融。自北向南,火山岩的岩性变化、源区改变,说明了随着俯冲作用的发生,岩浆弧不断变成熟,陆壳组分不断增加,印证了北祁连洋向南俯冲的观点。  相似文献   

2.
青山群火山岩是山东境内最具代表性的中生代火山岩,研究其形成时代及其成因对了解华北克拉通东部的地质演化历史具有重要意义.对鲁东万第地区中生代青山群中基性火山岩和中酸性火山岩样品进行LA-ICP-MS锆石U-Pb定年,结果分别为117±2 Ma和116±4 Ma,表明万第地区中生代青山群火山岩的形成年龄为早白垩世中晚期.结合前人研究结果,可得鲁东青山群火山岩岩浆开始和结束的时间均略晚于鲁西;万第中基性和中酸性火山岩形成过程中均受到过华北克拉通古老地壳物质的影响,且万第中基性火山岩还受到了扬子陆壳深俯冲的影响.   相似文献   

3.
宫家辉长闪长岩是鲁东昆嵛山地区出露面积最大的基性侵入体。锆石LA-ICP-MS U-Pb定年表明,其侵位于113±2Ma。高MgO含量(Mg~#高达56),Hf同位素组成位于华北克拉通地壳演化线之上,说明其地幔来源的特征。在地球化学特征上,富集K、Rb、Ba、Th、U等大离子亲石元素和轻稀土元素,亏损Nb、Ti、P等高场强元素;I_(Sr)为0.70745~0.70812,ε_(Nd)为~15.9~-12.0,Sr、Nd和Pb同位素组成[(~(206)Pb/~(204)Pb)_i=17.108~17.239]与胶东基性脉岩和胶莱盆地青山组火山岩相似;锆石Hf同位素组成比较均一,ε_(Hf)(t)平均值为-16.7,这些特征都暗示其来源于富集的华北岩石圈地幔。地球化学研究表明宫家辉长闪长岩经历了分离结晶作用,是胶东乃至中国东部岩石圈减薄的产物。  相似文献   

4.
碧口群火山岩岩石成因研究   总被引:13,自引:1,他引:12  
新元古代(846~776Ma)碧口群火山岩喷发于大陆板内裂谷环境。该火山岩系以基性火山岩为主,酸性火山岩次之,中性火山岩少见。根据岩石地球化学数据,碧口群裂谷基性熔岩总体上属于低Ti/Y(<500)岩浆类型。元素和同位素数据表明,碧口群基性熔岩的化学变化不是由一个共同的母岩浆的结晶分异作用所产生。它们极有可能是源于地幔柱源(εNd(t)≈+3,87Sr/86Sr(t)≈0.704,La/Nb≈0.7)。地壳混染作用对于碧口群裂谷基性熔岩的形成有重要贡献。我们的研究揭示,碧口群火山岩存在空间上的岩石地球化学变化。东部红岩沟和辛田坝—黑木林地区的碧口群基性熔岩以拉斑玄武岩为主,产生于幔源石榴子石稳定区的高度部分熔融。相反,西部白杨—碧口地区的碧口群基性熔岩的母岩浆则是形成于幔源的尖晶石-石榴子石过渡带:碱性熔岩是产生于部分熔融程度较低的条件下,拉斑玄武质熔岩则是产生于部分熔融条件较高的条件下。它们经受了浅层位辉长岩质(cpx+plag±ol)分离作用,化学变异较大。  相似文献   

5.
对胶东青山群中酸性火山岩进行了LA-ICP-MS锆石U-Pb同位素年代学研究。结果表明,3个粗面岩-粗面英安岩和1个流纹岩的年龄分别为119.4±0.9 Ma、118.2±1.0 Ma、120.2±0.9 Ma和120.0±0.8 Ma,都形成于早白垩世120~118 Ma之间。研究表明郯庐断裂带山东段及其两侧中生代青山群火山岩的年龄与苏皖段断裂带内火山岩的年龄相似,明显小于苏皖段断裂带附近火山岩盆地的火山岩年龄。其结果表明在中国东部岩石圈减薄的大背景下,受郯庐断裂控制的岩浆喷发事件持续的时间可能更长。胶东青山群中酸性火山岩表现出富钾、富碱、贫镁、贫钛和低Ni、Cr的地球化学特征,轻稀土元素富集,重稀土元素亏损。按地球化学组成可进一步分为粗面岩-粗面英安岩和流纹岩两类,前者富集大离子亲石元素Rb、Ba、K,亏损高场强元素Nb、Ta、Ti和P;而后者则强烈亏损Ba、Sr等大离子亲石元素和Ti、P等高场强元素。粗面岩-粗面英安岩相对流纹岩具有高的Sr和Ba含量以及La/Nb、Ba/Nb比值,而具有低的Rb/Ba比值和Eu负异常,说明它们来源于不同的岩浆源区。推测粗面岩-粗面英安岩可能是下地壳(俯冲扬子下地壳或者古老华北下地壳)部分熔融和富集地幔部分熔融混合的产物;流纹岩是由于区域拉张环境和高热异常背景下,下地壳发生深熔产生的岩浆喷出地表形成的,岩浆在上升过程中发生有分离结晶(大量斜长石的分离结晶)过程。  相似文献   

6.
目前对于华北克拉通东部晚中生代花岗质岩石的成因仍存在地幔柱、加厚/拆沉下地壳部分熔融、俯冲板片脱水导致地壳熔融等不同认识。辽西兴城地区晚中生代花岗质岩石主要由二长花岗岩、石英闪长岩、花岗斑岩和石英正长岩组成,岩浆成因锆石U-Pb同位素定年结果显示岩浆活动主要发生于晚侏罗世(156Ma)、早白垩世早期(139Ma)、早白垩世中期(130~125Ma)。岩石地球化学测试分析结果显示岩石属于高钾钙碱性系列且具有富集K、Pb等大离子亲石元素而相对亏损Nb、Ta、Ti等高场强元素等活动陆缘岩浆岩特点,表明辽西地区晚中生代岩浆活动的发生与俯冲作用有关。晚侏罗世-早白垩世早期(156~139Ma)花岗质岩石地球化学特征与I型花岗岩类似,同时具有富集的Hf同位素组成(εHf(t)=-22.70~-18.66)和古老的Hf同位素二阶段模式年龄(tDM2=2387~2767Ma),其初始岩浆可能来源于古老中上地壳的部分熔融;形成于130Ma的花岗质岩石同样具有与I型花岗岩相类似的岩石地球化学特征,但其Hf同位素组成突变为亏损(εHf(t)=+3.64~+6.22、tDM1=537~969Ma),其初始岩浆起源于新元古代新生地壳物质的部分熔融并混入少量亏损地幔物质组分;形成于125Ma的花岗质岩石为碱性A型花岗岩,岩石地球化学特征与其他岩石有所不同,具有负的εHf(t)值(-17.30~-11.56)和相对古老的Hf同位素二阶段年龄(tDM2=1917~2278Ma),初始岩浆可能起源于较为古老的中下地壳部分熔融并有幔源物质的参与。华北克拉通东部形成于160~139Ma的花岗质岩石具有I型、高钾钙碱性、与埃达克质岩石类似的高Sr/Y、低Y含量特征和富集的Hf同位素组成,而形成于130~120Ma的花岗质岩石具有A型、碱性、与典型岛弧岩浆岩类似的岩石地球化学特征和相对亏损的Hf同位素组成,同时晚中生代岩浆活动具有向洋年轻化的特点,表明华北克拉通东部156~139Ma期间可能受到古太平洋板块的持续俯冲作用,而139~130Ma古太平洋俯冲板片开始回撤,130~125Ma进入古太平洋俯冲板片持续回撤导致的强烈区域伸展作用阶段。古太平洋俯冲板片脱水交代岩石圈地幔并形成幔源岩浆,幔源岩浆不断底侵作用于古老/新生地壳使其发生部分熔融为花岗质岩石提供岩浆来源。  相似文献   

7.
内蒙古北部二连-东乌旗地区出露早古生代火山岩,为兴蒙造山带北缘构造-岩浆岩带的组成部分,对研究造山带早古生代构造格局及演化具有重要作用。本文对东乌旗北部早古生代中基性及酸性火山岩进行了锆石U-Pb年代学、岩石学、全岩地球化学及Sr-Nd-Hf同位素分析。定年结果显示,中基性火山岩成岩年龄为452±2Ma,酸性火山岩为430±20Ma,表明早古生代岩浆活动可延续至中志留世。地球化学组成上,中基性火山岩稀土总量中等,Eu异常不明显,富集Rb、Sr、Th、U等大离子亲石元素,亏损Nb、Ta等高场强元素,特征类似岛弧岩浆岩;酸性火山岩富集Th、U,Eu负异常显著,但Rb、Ba等大离子亲石元素富集程度不高,Nb、Ta等高场强元素亏损不明显,表现出板内岩浆特点。中基性和酸性火山岩均具有亏损的同位素组成:中基性火山岩ε_(Nd)(t)=+203~+267,ε_(Hf)(t)值介于+79~+145之间;酸性火山岩ε_(Nd)(t)=+494,ε_(Hf)(t)值为+99~+153。岩石学及地球化学分析表明,中基性火山岩为岛弧环境下遭受俯冲流体交代的地幔楔部分熔融产物,酸性火山岩则来源于新生基性下地壳熔融并具有板内岩浆特征,可能指示了俯冲的结束。结合前人资料,二连-东乌旗地区早古生代岩浆活动介于晚寒武-中志留世之间,形成时间及阶段性演化特征近似于苏尼特左旗-锡林浩特早古生代岩浆岩带,暗示两者可能具有成因联系,均为早古生代古亚洲洋向北俯冲的产物。  相似文献   

8.
辽西北票蓝旗组火山岩锆石U-Pb年龄和Hf同位素组成   总被引:6,自引:1,他引:5  
马强  郑建平 《岩石学报》2009,25(12):3287-3297
辽西北票常河营子地区有中生代蓝旗组火山岩分布,其中上部安山质角砾熔岩的锆石LA-ICPMS U-Pb年龄分析结果表明,其结晶年龄为159.4±3.4Ma,属晚侏罗世.锆石~(176)Hf/~(177)Hf比值介于0.282098~0.282789之间,ε_(Hf)(t)值为-20.4~+4.1,主体分布在华北克拉通地壳演化线之上,位于古元古代地壳演化范围内,所给出的亏损地幔年龄(t_(DM))和平均地壳模式年龄(t_(crust))分别为0.7~1.6Ga和0.9~2.5Ga.结合已发表蓝旗组中酸性火山岩的岩石地球化学及Sr-Nd同位素组成特征,我们认为安山质火山岩源于古老(如晚太古代)下地壳玄武质岩石的部分熔融,其形成过程可能与中生代幔源岩浆底侵作用有关.  相似文献   

9.
以山东西部西董地区中生代青山群火山岩为研究对象,在进行系统的元素-同位素分析的基础上,探讨其岩浆源区和岩石成因,同时丰富该区域岩石地层的地球化学特征。西董青山群火山岩Si O2含量变化于52.8%~59.8%之间,主要为钙碱性系列岩石,岩石组合为玄武质粗面安山岩-玄武质安山岩-粗面安山岩,Mg O、TFe2O3、Mn O、Ti O2、Ca O与Si O2具有明显的负相关关系,Al2O3和Na2O与Si O2具有正相关关系;微量元素富集Rb、Ba、Th、U和K等大离子亲石元素,亏损Nb、Ta和Ti等高场强元素,稀土元素总量∑REE变化范围为100×10-6~187×10-6,(La/Yb)N比值范围为8.2~11.1,无明显的Eu异常(δEu=0.9~1.02);显示富集且均一的Sr-Nd同位素组成((87Sr/86Sr)t=0.7047~0.7050,εNd(t)=-16.5~-14.2)。西董青山群火山岩的Nd、Sr同位素组成与Si O2缺乏明显负相关关系,Nb/Ta与La/Nb之间不具有负相关关系以及Nb与Th之间具有正相关关系,指示岩浆在上升和演化过程中地壳混染作用对青山群火山岩岩浆化学组成的影响并不显著;火山岩Mg O含量明显高于玄武岩部分熔融形成的熔体,说明青山群中基性火山岩岩浆的形成过程可能与大陆地壳和地幔岩系之间的相互作用有关。综合分析表明,西董中生代青山群火山岩是大陆下地壳物质经拆沉作用于地幔环境中发生部分熔融,与上地幔岩石发生交代作用后进入地表形成。  相似文献   

10.
地球化学分析结果表明:北秦岭斜峪关群基性熔岩的LREE轻度富集,(La/Yb)N=1.31~3.27,中—酸性熔岩的LREE显著富集,(La/Yb)N=4.22~26.54。草滩沟群基性火山岩LREE中度富集,(La/Yb)N=2.50~2.97,中—酸性熔岩的LREE显著富集,(La/Yb)N=4.57~10.15。低δEu值(0.62~1.14)暗示斜峪关群和草滩沟群火山岩初始玄武质岩浆的分离结晶程度很低、初始岩浆中斜长石分异作用很弱,大离子亲石元素明显富集,而相对N-MORB较低的高场强元素丰度,特别是明显的Ta、Nb低谷,展示了典型的岛弧火山岩的特征。同位素地球化学分析揭示,斜峪关群和草滩沟群火山岩的初始Sr比值为0.703438~0.708329,初始Nd比值为0.511948~0.512327,多集中于0.512003~0.512327间,εNd均为正值( 5.42~ 12.81),表明二群火山岩主要来自富集地幔源区。斜峪关群和草滩沟群火山岩的岩浆源区为混染的富集地幔源区,是俯冲板片熔融和地壳混染的产物,形成于岛弧构造环境。SHRIMP锆石U-Pb测年表明斜峪关群基性熔岩形成时代为早奥陶世(472±11Ma),其中的古老捕晶锆石(1294±34Ma)表明斜峪关群火山岩的岩浆源区存在元古宙地壳混染。  相似文献   

11.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

12.
邓格庄金矿地处华北克拉通胶东半岛东部苏鲁超高压带内,黄金储量已超过50t,是胶东牟平-乳山成矿带第二大石英脉型金矿床。矿体产于昆嵛山岩体和荆山群变质岩接触带附近的昆嵛山岩体中,金矿体受控于金牛山断裂带西侧的次级断裂。矿石中的硫-铅-氢-氧同位素值表明成矿流体主要来源于岩浆,具有以地壳为主兼具地幔混合特征,通过深渊断裂发生迁移,在成矿晚期遭受天水混染。围岩昆嵛山二长花岗岩高精度的锆石U-Pb年龄为155. 8Ma,成矿前期蚀变岩中蚀变矿物钾长石和绢云母~(40)Ar-~(39)Ar精确测年结果分别为123Ma和104Ma。结合近年来前人的研究资料,我们建立了胶东金矿集区中生代岩浆岩演化序列,将其划分为160~150Ma、130~110Ma、110~100Ma三个阶段,并给出了大规模爆发式成矿的年龄峰值(120±10Ma)。认为邓格庄金矿既非以变质流体为特征的典型造山型金矿,也非浅成低温热液型金矿,而是伴随华北克拉通岩石圈减薄、软流圈物质上涌、地壳拉张而使壳幔混合流体在浅部以大纵深脉状集中成矿为基本特征的中温岩浆热液型金矿。  相似文献   

13.
Volcanism associated with the Kerguelen Large Igneous Province is found scattered in southwestern Australia (the ca 136 to ca 130 Ma Bunbury Basalts, and ca 124 Ma Wallaby Plateau), India (ca 118 Ma Rajmahal Traps and Cona Basalts), and Tibet (the ca 132 Ma Comei Basalts), but apart from the ~70 000 km2 Wallaby Plateau, these examples are spatially and volumetrically minor. Here, we report dredge, geochronological and geochemical results from the ~90 000 km2 Naturaliste Plateau, located ~170 to ~500 km southwest of Australia. Dredged lavas and intrusive rocks range from mafic to felsic compositions, and prior geophysical analyses indicate these units comprise much of the plateau substrate. 40Ar/39Ar plagioclase ages from mafic units and U–Pb zircon ages from silicic rocks indicate magmatic emplacement from 130.6 ± 1.2 to 129.4 ± 1.3 Ma for mafic rocks and 131.8 ± 3.9 to 128.2 ± 2.3 Ma for silicic rocks (2σ). These Cretaceous Naturaliste magmas incorporated a significant component of continental crust, with relatively high 87Sr/86Sr (up to 0.78), high 207Pb/204 Pb ratios (15.5–15.6), low 143Nd/144Nd (0.511–0.512) and primitive-mantle normalised Th/Nb of 11.3 and La/Nb of 3.97. These geochemical results are consistent with the plateau being underlain by continental basement, as indicated by prior interpretations of seismic and gravity data, corroborated by dredging of Mesoproterozoic granites and gneisses on the southern plateau flank. The Cretaceous Naturaliste Plateau igneous rocks have signatures indicative of extraction from a depleted mantle, with trace-element and isotopic values that overlap with Kerguelen Plateau lavas reflect crustal contamination. Our chemical and geochronological results therefore show the Naturaliste Plateau contains evidence of an extensive igneous event representing some of the earliest voluminous Kerguelen hotspot magmas. Prior work reports that contemporaneous correlative volcanic sequences underlie the nearby Mentelle Basin, and the Enderby Basin and Princess Elizabeth Trough in the Antarctic. When combined, the igneous rocks in the Naturaliste, Mentelle, Wallaby, Enderby, Princess Elizabeth, Bunbury and Comei-Cona areas form a 136–124 Ma Large Igneous Province covering >244 000 km2.  相似文献   

14.
We trace source variations of active margin granitoids which crystallised intermittently over ~300 Ma in varying kinematic regimes, by combining zircon Lu-Hf isotopic data from Early Palaeozoic to Early Jurassic igneous and metaigneous rocks in the Mérida Andes, Venezuela and the Santander Massif, Colombia, with new whole rock Rb/Sr and Sm-Nd isotopic data, and quartz O isotopic data. These new data are unique in South America because they were obtained from discrete magmatic and metamorphic zircon populations, providing a high temporal resolution dataset, and compare several isotopic systems on the same samples. Collectively, these data provide valuable insight into the evolution of the isotopic structure of the continental crust in long-lived active margins.Phanerozoic active margin-related granitoids in the Mérida Andes and the Santander Massif yield zircon Lu-Hf model ages ranging between 0.77 Ga and 1.57 Ga which clearly define temporal trends that can be correlated with changes in tectonic regimes. The oldest Lu-Hf model ages of >1.3 Ga are restricted to granitoids which formed during Barrovian metamorphism and crustal thickening between ~499 Ma and ~473 Ma. These granitoids yield high initial 87Sr/86Sr ratios, suggesting that evolved, Rb-rich middle to upper crust was the major source of melt. Granitoids and rhyolites which crystallised during subsequent extension between ~472 Ma and ~452 Ma yield younger Lu-Hf model ages of 0.80 Ga–1.3 Ga and low initial 87Sr/86Sr ratios, suggesting that they were derived from much more juvenile, Rb-poor sources such as mafic lower crust and mantle-derived melts. The rapid change in magmatic sources at ~472 Ma can be attributed either to reduced crustal assimilation during extension, or a short pulse of crustal growth by addition of juvenile material to the continental crust. Between ~472 Ma and ~196 Ma Lu-Hf model ages remain mostly constant between ~1.0 and ~1.2 Ga. The large scatter and the absence of definite trends in initial 87Sr/86Sr ratios suggest that both mafic, Rb-poor, and evolved Rb-rich sources were important precursors of active margin magmas in Colombia and Venezuela throughout the Palaeozoic to the Early Jurassic.Previous studies have shown that the genesis of arc magmas may be stimulated by heat advection to the crust during the underplating of mantle derived melt, but the absence of permanent younging trends in Lu-Hf model ages from ~472 Ma to ~196 Ma suggests that very little new crust was generated during this period in the studied region. An overwhelming majority of the analysed igneous rocks yield zircon Lu-Hf model ages of >1 Ga which may be accounted for by documented local crustal end members of 1 Ga–1.6 Ga, and do not require contributions from the depleted mantle. Therefore, recycling of ~1 Ga and older crust was a dominant process in the north-western corner of Gondwana between ~472 Ma and ~196 Ma.This study shows that whole rock Sm-Nd and zircon Lu-Hf data can be interpreted similarly regarding the age of the source regions, whereas Rb-Sr and O isotope data from the same rocks yield valuable information regarding the geochemical nature of the source.  相似文献   

15.
华北克拉通东部中生代岩浆岩的主要特征是岩石类型复杂(从辉长质到二长花岗质),显示高钾钙碱性、高Sr-Ba、高Sr/Y和La/Yb比值和高度富集的Sr-Nd同位素成分。锆石SHRIMP定年表明,太行山地区岩浆作用发生在138-127Ma之间。该年代结果与东亚其它地区已经发表的锆石年代数据揭示了中生代岩浆作用的发展具有从日本岛(和朝鲜半岛;210Ma),到胶辽半岛(180Ma),再到大别山-太行山(138Ma)的年轻化趋势。这暗示华北中生代岩浆作用可能与古太平洋板块的俯冲有关,但华北中生代岩浆岩似乎没有明显的向内陆方向的成分变化极性,可能与古太平洋板块在地幔过渡带的水平俯冲有关。地球化学数据表明,华北中生代岩浆岩可能主要形成于壳幔岩浆混合作用和随后的分离结晶过程,而不是形成于基性下地壳部分熔融作用。  相似文献   

16.
The Sesia magmatic system of northwest Italy allows direct study of the links between silicic plutonism and volcanism in the upper crust and the coeval interaction of mafic intrusions with the deep crust. In this paper, we focus on the chemical stratigraphy of the pre-intrusion crust, which can be inferred from the compositions of crustal-contaminated mafic plutonic rocks, restitic crustal material incorporated by the complex, and granitic rocks crystallized from anatectic melts. These data sources independently indicate that the crust was compositionally stratified prior to the intrusion of an 8-km-thick gabbroic to dioritic body known as the Mafic Complex, with mica and K-feldspar abundance decreasing with depth and increasing metamorphic grade. Reconsideration of published zircon age data suggest that the igneous evolution initiated with sporadic pulses at around 295 Ma, when mafic sills intruded deep granulites which provided a minor amount of depleted crustal contaminant, very poor in LIL elements. With accelerated rates of the intrusion, between 292 and 286 m.y, mafic magmas invaded significantly more fertile, amphibolite-facies paragneisses, resulting in increased contamination and generating hybrid rocks with distinct chemistry. At this point, increased anatexis produced a large amount of silicic hybrid melts that fed the incremental growth of upper-crustal plutons and volcanic activity, while the disaggregated restite was largely assimilated once ingested by the growing Mafic Complex. This “igneous climax” was coincident with an increasing rate of intrusion, when the upper Mafic Complex began growing according to the “gabbro glacier” model and, at about the same time, volcanic activity initiated. Cooling lasted millions of years. In the coupled magmatic evolution of the deep and upper crust, the Mafic Complex should be considered more as a large reservoir of heat rather than a source of upper-crustal magma, while the fertility of “under/intra-plated” crust plays a crucial role in governing the generation of large volumes of continental silicic magmas.  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987113001072   总被引:6,自引:1,他引:5  
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian.  相似文献   

18.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

19.
Despite the exposures of Precambrian and Paleozoic rocks and the accretionary tectonic history of the northern Pacific (northeastern Asia, Alaska, and Kamchatka), it is likely that a considerable portion of the lower crust of the continental margins is much younger and was generated by Cretaceous postaccretion magmatic events. Data on xenoliths suggest that Late Cretaceous and Paleocene mafic intrusions and cumulates of calc-alkaline magmas may become more important with increasing depth. This conclusion is based on the petrological and geochronological investigation of lower-middle crustal xenoliths borne by mantlederived alkali basalt lavas and U-Pb dating of zircon cores from the igneous rocks of the region. We studied deep mafic xenoliths of granulites and gabbroids (accounting for <2% of the general xenolith population) from the Late Neogene alkali basalt lavas of the Enmelen and Viliga volcanic fields (Russia) and the Imuruk volcanic field in the Seward Peninsula, St. Lawrence Island, and Nunivak Island (Alaska). Depleted MORB-like varieties and relatively enriched in radiogenic isotopes and LREE rocks were distinguished among plagioclase-bearing xenoliths. The most representative collection of Enmelen xenoliths was subdivided into three groups: LREE enriched charnockitoids and mafic melts, pyroxene-plagioclase cumulates with a positive Eu anomaly, and LREE depleted garnet gabbroids. Mineral thermobarometry and calculated seismic velocities (P = 5–12 kbar, T = 740–1100°C, and V p = 7.1 ± 0.3 km/s) suggest that the xenoliths were transported from the lower and middle crust, and the rocks show evidence for their formation through the magmatic fractionation of calc-alkaline magmas and subsequent granulite-facies metamorphism. The U-Pb age of zircon from the xenoliths ranges from the Cretaceous to Paleocene, clustering mainly within 107–56 Ma (147 crystals from 17 samples were dated). The zircon dates were interpreted as reflecting the magmatic and metamorphic stages of the growth and modification of the regional crust. The distribution of the obtained age estimates corresponds to the main magmatic pulses in two largest magmatic belts of the region, Okhotsk-Chukchi and Anadyr-Bristol. The absence of older inherited domains in zircons from both the xenoliths and igneous rocks of the regions is a strong argument in favor of the idea on the injection of juvenile material and underplating of calc-alkaline magmas in the lower crust during that time interval. This conclusion is supported by isotope geochemical data: the Sr, Nd, and Pb isotope ratios of the rocks and xenolith minerals show mantle signatures (87Sr/86Sr = 0.7040–0.70463, 143Nd/144Nd = 0.51252–0.51289, 206Pb/204Pb = 18.32–18.69) corresponding to an OIB source and are in general similar to those of the Cretaceous calc-alkaline basalts and andesites from continental-margin suprasubduction volcanoplutonic belts. Xenoliths from Nunivak Island and Cape Navarin show more depleted (MORB-like) geochemical and isotopic characteristics, which indicates variations in the composition of the lower crust near the southern boundary of the Bering Sea shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号