首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ore Geology Reviews》2008,33(3-4):629-650
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

2.
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

3.
We investigated the contact zone between peridotite lenses and host gneisses located on the northern side of the Hochwart peak, also known as Vedetta Alta (Ulten Zone, Alto Adige -Südtirol) where metasomatic contact bands occur. The country rocks are gneisses consisting mainly of quartz, K-feldspar, garnet, kyanite, biotite and muscovite. The ultramafic body consists of a hectometre-sized garnet peridotite and harzburgite lens. The reaction zone shows mineralogic zoning from phlogopite-rich to tremolite-anthophyllite-talc-rich rocks from the host gneiss towards the peridotite. In some cases, lenses of serpentine and talc in association with chlorite, and trondhjemitic pods develop at the ultramafic rocks border to the gneisses. Trondhjemite dikes with pegmatoid texture also crosscut the peridotite body. Phlogopite aggregates with accessory zircon, Cl-apatite and tourmaline and phlogopite-hornblende aggregates also occur. The combination of petrography, mineral chemistry and mass balance calculations constrains the gains and losses of elements during metasomatism. Reaction zone formation involved extensive addition of H2O, K2O and LILE from the fluid, whereas MgO, CaO and Al2O3 were removed from the peridotite. Thus, the formation of the reaction zones between the mantle rocks and the gneisses was triggered by considerable fluid/melt circulation, causing crystallisation of mainly phlogopite, anthophyllite and talc, and the release of a trondhjemitic residual melt. Field mapping provides evidence that the internal structures of the host migmatites (folds) and those of the peridotites (foliation, fluid texture) are discordant. Pseudosection calculations give insights into the P-T conditions (T 660–700°C; P 0.5–0.7 GPa) of metasomatism responsible for the formation of reaction zones, which is related to the retrograde path of the Ulten Zone peridotites. Our results suggest that the redistribution of major and trace elements in subduction zones is strongly influenced by metasomatic reactions occurring at the slab-mantle interface.  相似文献   

4.
We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na‐poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric‐forming Na‐rich muscovite is also progressively replaced by fabric‐forming Na‐poor muscovite. The mineralogy of the new phyllonitic fault‐rock produced is dominated by Na‐poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric‐forming Na‐rich muscovite is selectively replaced at high‐strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high‐grade porphyroblasts by weaker Na‐poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na‐rich muscovite‐defined foliation destroys not only the metastable high‐grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.  相似文献   

5.
Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt   总被引:1,自引:0,他引:1  
Petrographical and petrochemical studies of the talc host rocks of Rod Umm El-Farag and Wadi Thamil in the Eastern Desert of Egypt reveal that they consist mainly of metavolcanic rocks, whilst the geology, petrography, mineralogy, chemistry and quality of the enclosed talc lenses reveal that the ore has ultramafic affinity. The setting of the talc ore is similar to that hosted by metavolcanic rocks in terms of the type of host rocks, but it differs in its ultramafic affinity, resembling the talc ore hosted by ultramafic rocks. The parent ultramafic rocks occur in the form of small bodies obducted later along a tectonized fault plane within metavolcanic host rocks (Precambrian) and their tuffaceous equivalents. The metavolcanic host rocks consist mainly of metabasalts, meta-andesites and metatuffs with a smaller amount of dacite, rhyolite and tuffaceous lava. The metamorphic grade is low corresponding to greenschist facies. The calc-alkaline and tholeiitic characters of the volcanic rocks are determined by the behaviour of trace elements on some chemical discrimination diagrams. After the emplacement of the ultramafic bodies, they underwent regional metamorphism which was accompanied by further serpentinization. Metasomatic changes, related to regional metamorphism (corresponding to the emplacement of granitic plutons at a distance) include talc, carbonate, tremolite and chlorite formation. SiO2, H2O and CO2 have been supplied from hydrothermal solutions but all other constituents are considered indigenous to the ultramafic bodies, and none of the metavolcanic components have been added during talc formation. Mineralogically, the talc ore is relatively simple, including talc, tremolite, actinolite, chlorite and chromite. On the basis of mineral abundances, pure talc (>90% talc), chlorite-rich and tremolite-actinolite-rich (50–70% talc) ore types have been recognized. Chromite is largely zoned and occurs as disseminated grains within the talc matrix. Cr, Al and Mg were released during the formation of ferrite chromite and accommodated in the talc and chlorite structures. The chemical data show that there is very little variation in the contents of MgO, Fe2O3, FeO, NiO, Cr2O3, and Co between the parent ultramafic rocks and talc ore. Al2O3, CaO, Fe2O3 and FeO are the main impurity oxides in the talc ore. They decrease the whiteness of the ore and consequently limit the use of talc. Received: 26 March 1999 / Accepted: 10 October 1999  相似文献   

6.
Corundum (ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences: (1) Maniitsoq region (Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and (2) Nuuk region (Storø), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic rocks (amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing rocks is consistent with significant depletion of SiO2 in combination with addition of Al2O3, MgO, K2O, Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal of SiO2. The juxtaposition of relatively silica- and aluminum-rich metasedimentary rocks with low silica ultramafic rocks established a chemical potential gradient that leached/mobilized SiO2 allowing corundum to stabilize in the former rocks. Furthermore, addition of Al2O3 via a metasomatic reaction is required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hydroxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels. The three main exploration vectors for corundum within Archean greenstone belts are: (1) amphibolite- to granulite-facies metamorphic conditions, (2) the juxtaposition of ultramafic rocks and aluminous metapelite, and (3) mica-rich reactions zones at their interface.  相似文献   

7.
The Agnew nickel sulfide deposit is spatially associated with a lenticular body of ultramafic rocks which shows a concentric zonation in metamorphic mineralogy. Olivine + tremolite + chlorite + cummingtonite ±enstatite assemblages occur at the margin of the ultramafic lens, giving way to olivine + anthophyllite, olivine + talc and olivine + antigorite assemblages successively inwards. These rocks are interpreted as having crystallized from komatiitic lavas, and exhibit a spectrum of compositions from those of original flow tops to pure olivine adcumulates. The relative modal abundances of metamorphic olivine, tremolite and chlorite reflect original proportions of cumulus olivine and komatiite liquid in the protolith. Peak metamorphic conditions are estimated at 550° C, based on garnet-biotite thermometry, at a maximum pressure of 3 kb. This temperature falls within the narrow range over which metamorphic olivine may co-exist with enstatite, anthophyllite, talc or antigorite depending upon the fugacity of water in the metamorphic fluid. The observed mineralogical zonation is therefore attributed to infiltration by CO2-rich fluids, generated by decarbonation of talc-carbonate rocks formed during pre-metamorphic marginal alteration of the ultramafic lens. Metamorphic fluids were essentially binary mixtures of water and CO2, with minor H2S having a maximum partial pressure less than 1 percent of total pressure. Enstatite-bearing assemblages formed in the presence of CO2-rich fluids at fluid: rock volume ratios close to one, while anthophyllite, talc and antigorite bearing assemblages formed in the presence of progressively more water-rich fluids at progressively lower fluid-rock ratios.  相似文献   

8.
Abstract. Pink piemontite-spessartine-bearing and grey-green spessartine-bearing manganiferous quartzose schists derived from siliceous pelagites, and green quartzofeldspathic schists, are described from the greenschist facies of the Haast Schist terrane, near Arrow Junction, western Otago. Electron microprobe data are reported for sphene, spessartine-rich garnet, manganoan epidote, piemontite, tourmaline, phengitic muscovite, chlorite, albite, haematite, rutile, manganoan calcite and chalcopyrite. Metamorphism occurred at about 6.4kbar, 400°C. Xco2 was above the quartz-rutile-calcite-sphene buffer (Xco2± 0.02) throughout the recorded metamorphic history of the piemontite schists. It dropped from above to below this critical buffering value in a spessartine-rich schist and it was close to or below the buffering value in the quartzofeldspathic schists. Production of piemontite required high fO2, believed to be inherited from MnOx in the parent pelagite. Substantial loss of O2 (e.g. minimum of 0.19% by weight in one rock) during diagenesis and/or metamorphism is inferred. In the grey-green schists this inhibited piemontite formation. Slight loss of O2 and Ca2+ accompanied minor late-stage replacement of piemontite by second generation spessartine. Observed zoning and mineral replacements indicate rise of temperature, drop in pressure, or invasion by solutions of lower fO2 and XCO2 equilibrated with surrounding schists. The detailed chemistry of the minerals studied correlates with available Mn and with bulk-rock (Fe3+ x 100)/(Fe2++ Fe3+). The oxidation ratio ranges from 24 in average green quartzofeldspathic schist, through 78 in average grey-green manganiferous quartzose schist, to almost 100 in some piemontite-bearing schists. As Fe2+ gives way to Fe3+, Mg/Fe ratios tend to rise in chlorite, phengite, tourmaline, spessartine, and calcite, Mn increases and Ti decreases in haematite, Mn increases in spessartine and calcite, and Fe increases in rutile. Available divalent cations are depleted relative to Al; chlorite is more aluminous, and phengite more paragonitic than in typical Haast schists.  相似文献   

9.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

10.
The transfer of fluid and trace elements from the slab to the mantle wedge cannot be adequately explained by simple models of slab devolatilization. The eclogite-facies mélange belt of northern New Caledonia represents previously subducted oceanic crust and contains a significant proportion of talc and chlorite schists associated with serpentinite. These rocks host large quantities of H2O and CO2 and may transport volatiles to deep levels in subduction zones. The bulk-rock and stable isotope compositions of talc and chlorite schist and serpentinite indicate that the serpentinite was formed by seawater alteration of oceanic lithosphere prior to subduction, whereas the talc and chlorite schists were formed by fluid-induced metasomatism of a mélange of mafic, ultramafic and metasedimentary rocks during subduction. In subduction zones, dehydration of talc and chlorite schists should occur at sub-arc depths and at significantly higher temperatures (∼ 800°C) than other lithologies (400–650°C). Fluids released under these conditions could carry high trace-element contents and may trigger partial melting of adjacent pelitic and mafic rocks, and hence may be vital for transferring volatile and trace elements to the source regions of arc magmas. In contrast, these hybrid rocks are unlikely to undergo significant decarbonation during subduction and so may be important for recycling carbon into the deep mantle. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Despite having been a target for volcanic-hosted massive sulfide (VHMS) deposits since the 1960s, few resources have been defined in the Archean Yilgarn Craton of Western Australia. Exploration challenges associated with regolith and deep cover exacerbate the already-difficult task of exploring for small, deformed deposits in stratigraphically complex, metamorphosed volcanic terranes. We present results of drill-core logging, petrography, whole-rock geochemistry and portable X-ray Fluorescence data from the King Zn deposit, to help refine mineralogical and geochemical halos associated with VHMS mineralisation in amphibolite-facies greenstone sequences of the Yilgarn Craton. The King Zn deposit (2.15?Mt at 3.47?wt% Zn) occurs as a 1–7 m-thick stratiform lens dominated by iron sulfides, in an overturned, metamorphosed volcanic rock-dominated sequence located ~140?km east of Kalgoorlie. The local stratigraphy is characterised by garnet-amphibolite and strongly banded intermediate to felsic schists, with rare horizons of graphitic schist and talc schist. Massive sulfide mineralisation is characterised by stratiform pyrite–pyrrhotite–sphalerite at the contact between quartz–muscovite schists (‘the footwall dacite’), and banded quartz–biotite and amphibole?±?garnet schists of the stratigraphic hanging-wall. A zone of pyrite–(sphalerite) and pyrrhotite–pyrite–(chalcopyrite) veining extends throughout the stratigraphic footwall. Footwall garnet-amphibolites are of sub-alkaline basaltic affinity, with a central zone dominated by chlorite?±?magnetite interpreted to represent the Cu-bearing feeder zone. SiO2, CaO, Fe2O3T, MgO and Cu concentrations are highly variable, reflecting quartz–epidote?±?chlorite?±?magnetite?±?sulfide alteration. Hydrothermal alteration in stratigraphically overlying intermediate to felsic rocks is characterised by a mineral assemblage of quartz–muscovite?±?chlorite?±?albite?±?carbonate. Cordierite and anthophyllite are locally significant and indicative of zones of Mg-metasomatism prior to metamorphism. Increases in SiO2, Fe2O3T, pathfinder elements (e.g. As, Sb, Tl), and depletions of Na2O, CaO, Sr and MgO occur in quartz–muscovite schists approaching massive sulfide mineralisation. Within all strata (including the immediate hanging-wall), the following pathfinder elements are strongly correlated with Zn: Ag, As, Au, Bi, Cd, Eu/Eu*, Hg, In, Ni, Pb, Sb, Se and Tl. These geochemical halos resemble less metamorphosed VHMS deposits across the Yilgarn Craton and suggest that although metamorphism leads to element mobility and mineral segregation at the thin-section scale, assay samples of ~20?cm length are sufficient to vector to mineralisation in amphibolite facies greenstone belts. Recognition of minerals such as Mg-chlorite, muscovite, cordierite, anthophyllite, biotite/phlogopite, and abundant garnet are significant, in addition to Al-rich phases (i.e. kyanite, sillimanite, andalusite and/or staurolite) not identified at King. Chemographic diagrams may be used to identify and distinguish different alteration trends, along with several alteration indices (e.g. Alteration Index, Carbonate–Chlorite–Pyrite Index, Silicification Index) and the abundance of normative corundum and quartz.  相似文献   

12.
Komatiites are generally found in Archean greenstone belts, but have been reported in some Mesozoic volcano-sedimentary sequences. The Palma Volcano-Sedimentary Supersuite (PVSS) is a Neoproterozoic sequence composed of meta-ultramafic volcanic rocks, mafic-to-felsic metavolcanic rocks, and metasedimentary rocks ranging from quartzites to chlorite-mica-quartz schists, marbles, and marls. Original PVSS structures were overprinted by two penetrative deformational surfaces (So//Sn and Sn+1); associated metamorphic assemblages are assigned to the upper greenschist facies. Basalts predominate over andesites and rhyodacites, and their major, minor, trace, and rare-earth elements display compatible geochemical trends characteristic of calc-alkaline magmas. Meta-ultramafic rocks are variable-thickness flows in the metasedimentary sequence. Metamorphism caused the development of a metasomatic tremolite zone around the serpentinite bodies, as well as chlorite and talc schist metasomatic zones. Evaluation of the geochemical mobility of the elements showed that the ratios between major and minor elements have not changed in the serpentinites. It was then possible to investigate the lithogeochemical nature of the serpentinites by studying the minor, trace, and rare-earth elements. The lithogeochemical investigation and the structures of the serpentinite bodies enable them to be regarded as komatiitic flows extruded under shallow water. These komatiite flows and calc-alkaline basalt to rhyodacite flows associated with shallow-water sediments suggest that this volcano-sedimentary sequence was developed in a Neoproterozoic arc-related tectonic setting.  相似文献   

13.
Two types of biotite isograd are defined in the low-grade metamorphism of the Wazuka area, a Ryoke metamorphic terrain in the Kii Peninsula, Japan. The first, BI1, is defined by the reaction of chlorite+K-feldspar= biotite+muscovite+quartz+H2O that took place in psammitic rocks, and the second, BI2, by the continuous reaction between muscovite, chlorite, biotite and quartz in pelitic rocks. The Fe/Mg ratios of the host rocks do not significantly affect the reactions. From the paragenesis of pelitic and psammitic metamorphic rocks, the following mineral zones were established for this low-pressure regional metamorphic terrain: chlorite, transitional, chlorite-biotite, biotite, and sillimanite. The celadonite content of muscovite solid solution in pelitic rocks decreases systematically with the grade of metamorphism from 38% in the chlorite zone to 11% in the biotite zone. Low pressure does not prohibit muscovite from showing the progressive change of composition, if only rocks with appropriate paragenesis are chosen. A qualitative phase diagram of the AKF system relevant to biotite formation suggests that the higher the pressure of metamorphism, the higher the celadonite content of muscovite at BI1, which is confirmed by comparing the muscovites from the Barrovian and Ryoke metamorphism.  相似文献   

14.
Summary This paper describes corundum formation in a metasomatic reaction zonation around an ultramafic body within a metapelitic sequence. The investigated body is about 100 m in diameter and is located in the Saualpe of the Austroalpine nappe complex in the Eastern Alps. The body is surrounded by a 10 m wide reaction zone (here called zone 3) containing the paragenesis garnet–staurolite–biotite–margarite–chlorite–corundum. Beyond a further metasomatic transition zone (here called zone 2), there are undisturbed metapelitic host rocks (zone 1) that have the metamorphic peak paragenesis garnet–biotite–plagioclase–staurolite–muscovite–quartz. It is shown that reaction zonation formed around 7.2kbar and 615°C during regional metamorphism, just above the serpentine breakdown reactions in the system MgO–SiO2–H2O. Detailed analysis of the whole rock compositions shows that the reaction zonation formed by infiltration metasomatism that caused significant mass loss in the two alteration zones. These zones are particularly depleted in SiO2, Na2O and possibly K2O. An XNa2O–XSiO2 thermodynamic pseudosection is presented that includes the parageneses of both the unaltered metapelitic host rock and the corundum-bearing parageneses. This suggests that the metasomatic process can be explained by the transfer of SiO2 and Na2O alone. We interpret that the process is driven by water liberated from the previously serpentinised ultramafic body during prograde dehydration during regional Eo-Alpine metamorphism. This fluid flowed outwards from the ultramafic body depleting the surrounding pelites in silica and causing margarite formation from plagioclase and muscovite. This interpretation of the driving mechanism is consistent with our knowledge of the low water activities of the Saualpe during the Eo-Alpine orogenic cycle.  相似文献   

15.
The Muzkol metamorphic complex in the Central Pamirs contains widespread occurrences of corundum mineralization, sometimes with gem-quality corundum. These occurrences are spatially related to zones of metasomatic alterations in calcite and dolomite marbles and crystalline schists. The calcite marbles contain corundum together with muscovite, scapolite, and biotite; the dolomite marbles contain corundum in association with biotite; and the schists bear this mineral coexisting with biotite and chlorite. All these rocks additionally contain tourmaline, apatite, rutile, and pyrite. The biotite is typically highly aluminous (up to 1.9 f.u. Al), and the scapolite is rich in the marialite end member (60–75 mol %). The crystallization parameters of corundum were estimated using mineral assemblages at T = 600–650°C, P = 4–6 kbar, X CO 2 = 0.2–0.5 at elevated alkalinity of the fluid. The Sr concentration in the calcite and dolomite marbles is low (345–460 and 62–110 ppm, respectively), as is typical of recrystallized sedimentary carbonates. The variations in the 87Sr/86Sr ratio in the calcite and dolomite marbles (0.70852–0.70999 and 0.70902–0.71021, respectively) were controlled by the introduction of radiogenic 87Sr during the metasomatic transformations of the rocks. The isotopic-geochemical characteristics obtained for the rocks and the results of numerical simulations of the fluid-rock interactions indicate that the corundum-bearing metasomatic rocks developed after originally sedimentary Phanerozoic carbonate rocks, with the desilication of the terrigenous material contained in them. This process was a manifestation of regional alkaline metasomatism during the closing stages of Alpine metamorphism. In the course of transformations in the carbonate reservoir, the juvenile fluid flow became undersaturated with respect to silica, which was a necessary prerequisite for the formation of corundum.  相似文献   

16.
In the middle part of the Cévennes, situated at the south-eastern border of the Massif Central, there are outcrops of micaschists, gneisses and granites in which the increase of metamorphic grade was investigated along the river Beaume. This paper presents the results of the petrographic-geochemical analysis of the micaschists of the greenschist facies.Chemical analyses of the micaschist-samples examined petrographically show their nearly constant composition, a fact which e.g., is expressed by similar CaO/Na2O- and MgO/FeO-proportions. As the average values of the determined oxides approach the respective average values of analyses of graywackes recorded by Pettijohn (1957) the original sediment is likely to have been an argillaceous graywacke deficient in calcite.In enrichments of the phyllosilicates pyrophyllite was detected by X-ray diffraction; its amount is about 2 to 5 weight percent of the rocks.With increasing metamorphic grade the following parageneses were found in the metamorphic zones of the greenschist facies: Zone Ia: Quartz+chlorite+pyrophyllite+muscovite+clinozoisite. Zone Ib: Quartz+chlorite+pyrophyllite+muscovite+biotite+clinozoisite.The absence of biotite in Zone Ia, though the chemism of the rocks is practically the same, is obviously due to the different Al2O3-content of the chlorites of Zones Ia and Ib. The chlorite of Zone Ia is more deficient in Al2O3 than the one of Zone Ib. With passage from Zone Ia to Zone Ib the position of the tie line between chlorite and muscovite in the ACF-A'FK-diagram changes in such a way that in Zone Ia, because of purely chemical reasons, biotite cannot occur as coexisting mineral.The beginning of Zone II is characterized by the occurence of almandine, rich in spessartine. The following paragenesis is typical of this zone: Quartz+chlorite+pyrophyllite +muscovite+biotite+almandine+clinozoisite.Additionally the micaschists of these three zones display albite, the greater part of which is concentrated in mm-thin layers with associated minor amounts of quartz and micas. Paragonite whose formation by reaction between albite and pyrophyllite is to be expected based on experimental results (Winkler, 1967, p. 95) could not be proved by X-ray diffraction.In Zone III andalusite occurs instead of pyrophyllite. Furthermore, as chlorite and clinozoisite are absent and oligoclase occurs for the first time this zone is regarded as the first subfacies of the almandine-amphibolite-facies. The chemism and the observed mineral parageneses of the subfacies of the almandine-amphibolite-facies will be treated in a separate publication.  相似文献   

17.
阿里西部超镁铁岩带八面体假像透辉石具有富钙贫铝的化学特点和降温降压的晶胞参数。八面体假像绿泥石具有富硅贫铝和贫铁的特点,它们都与地壳浅成热水产物的透辉石和绿泥石的化学特征完全不同。而它们可能是超镁铁岩由地幔上升侵位的早期所形成的热水交代产物。本文讨论了由尖晶橄榄石向八面体假像硅酸盐矿物转变的交代反应。  相似文献   

18.
Outside the Bergell tonalite contact aureole, ophicarbonate rocks consist of blocks of antigorite schist embedded in veins of calcite ± tremolite. An antigorite schistosity predates some of these calcite veins. Mono- and bimineralic assemblages occur in reaction zones associated with the veins. Within the aureole, the ophicarbonate veining becomes less distinct and polymineralic assemblages become more frequent. A regular sequence of isobaric univariant assemblages is found, separated by isograds corresponding to isobaric invariant assemblages. In order of increasing grade the invariant assemblages are: antigorite+diopside+olivine+tremolite+calcite antigorite+dolomite+olivine+tremolite+calcite antigorite+olivine+talc+magnesite antigorite+dolomite+olivine+tremolite+talc These assemblages match a previously derived topology in P-T-XCO2 space for the system CaO-MgO-SiO2-H2O-CO2; the field sequence can be used to adjust the relative locations of calculated invariant points with respect to temperature. Isobaric univariant and invariant assemblages are plotted along a profile map to permit direct comparison with the phase diagram.It is inferred that, during the formation of the ophicarbonate veins, calcite precipitated from fluid introduced into the serpentinite. During contact metamorphism, however, the compositions of pore fluids evolved by reaction in the ophicarbonate rocks were largely buffered by the solid phases. This control occurred on a small scale, because there are local variations in the buffering solid assemblages within a centimeter range.  相似文献   

19.
The Cambro‐Ordovician Glenelg tectonic zone of western Victoria is a distinctive metamorphic‐igneous segment of the Delamerian Orogenic Belt comprising two northwest‐striking regional metamorphic segments of andalusite‐sillimanite type prograding towards an axial granitic batholith. The second of five deformations (D2) was most significant, producing isoclinal folds, transposition and a pervasive regional foliation (S2). Southwest of the central batholith, biotite to migmatite zones contain mainly quartzo‐feldspathic rock (turbiditic metagreywacke, quartzo‐feldspathic schist and migmatite), plus less common metaquartzite and calc‐silicate rocks and minor metapelite. Metagabbro, metadolerite and amphibolite typically have the chemistry of mid‐ocean ridge basalts. Serpentinite pods and sheets were tectonically introduced to low‐grade areas. Northeast of the central batholith, quartzo‐feldspathic rock occupies the sillimanite and migmatite zones exclusively, with a regional concentration of pegmatites adjacent to the zone boundary. Gross interleaving of quartzo‐feldspathic schist, migmatite, pegmatite and muscovite‐bearing granitic rock is characteristic. Peak metamorphic conditions of 550 MPa at 640°C leading to migmatite formation were established by D2 time and accompanied by tonalite‐granodiorite and pegmatite emplacement. Subsequently, the thermal high contracted to the northeast culminating in the more extensive syn‐, post‐D4 to pre‐D5 granitic magmatism.  相似文献   

20.
Summary The Habachtal emerald deposit, Hohe Tauern, is composed of blackwall sequences of the type: serpentinite — talc schist — ±chlorite schist or actinolite schist — biotite schist —albite gneiss and/or micaschist. 2 serpentinites, 33 blackwall rocks, 9 micaschists, 10 albite gneisses, and 5 aplitic gneisses were analyzed for major elements, and for Li, Be, Cr, Ni, Zn, Zr, Sn, in 36 samples also for Sc, Cu, Rb, Sr, Cs, Ba, W. The blackwall formation is due to a metasomatic exchange involving a transfer of Mg from the serpentinite to the silicic country rock, and of Si, Ca, K, and Al from the country rock to the serpentinite. Some of the trace elements were also mobile: Compared to serpentinite, Li and Be were enriched in all the blackwall rocks, and Sn and Cs in the actinolite, chlorite, and biotite schists; Sr was concentrated in the dolomite-bearing talc schists, and Zn, Rb, and Ba predominantly in the biotite schists.
Geochemie der Blackwall-Folgen in der Smaragd-Lagerstätte Habachtal, Hohe Tauern, Österreich. Teil 1: Darstellung der geochemischen Daten
Zusammenfassung Die Smaragd-Lagerstätte Habachtal, Hohe Tauern, besteht aus Blackwall-Folgen vom Typ: Serpentinit — Talkschiefer — ±Chloritschiefer oder Aktinolithschiefer — Biotitschiefer — Albitgneis und/oder Glimmerschiefer. Von 2 Serpentiniten, 33 Blackwall-Gesteinen, 9 Glimmerschiefern, 10 Albitgneisen und 5 Aplitgneisen wurden chemische Analysen der Hauptelemente und von Li, Be, Cr, Ni, Zn, Zr, Sn vorgelegt; 36 Proben wurden auch auf Sc, Cu, Rb, Sr, Cs, Ba und W analysiert. Die Blackwall-Bildung geht auf einen metasomatischen Austausch zurück, bei dem Mg aus dem Serpentinit ins Nebengestein, Si, Ca, K und Al aus dem Nebengestein in den Serpentinit transportiert wurden. Daneben waren auch einige Spurenelemente mobil: Im Vergleich zum Serpentinit wurden Li und Be in allen Blackwall-Gesteinen, Sn und Cs in den Aktinolith-, Chlorit- und Biotitschiefern angereichert; Sr wurde(n) in den dolomitführenden Talkschiefern, Zn, Rb und Ba hauptsächlich in den Biotitschiefern konzentriert.


With 5 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号